
Research statement

My main research focus is on understanding patterns and coherent structures arising in the

natural sciences and engineering. Mathematically, these are described by nonlinear evolution

equations, which take the form of partial differential equations (PDEs) or systems of ordinary

differential equations (ODEs). Most of the systems I study are nonlinear wave equations, which

describe the time evolution of a function representing a wave profile. Coherent structures are

spatial patterns which maintain their shape as the system evolves in time. Examples of coherent

structures include solitary waves, which are localized disturbances that propagate at a constant

velocity; wavetrains, which are periodic disturbances that also propagate at a constant velocity;

and breathers, which are disturbances that are localized in space but oscillate in time. Solitary

waves have been a topic of interest since the 19th century, when John Scott Russell observed a

single, large surface wave on the Edinburgh-Glasgow Union Canal in Scotland; the wave propa-

gated along the canal undisturbed for a few miles before eventually decaying. This phenomenon

was explained mathematically by the Korteweg–De Vries (KdV) equation

ut + uxxx + 6uux = 0,

which has both solitary wave and wavetrain solutions.

Figure 1: Solitary wave off the coast of Hawaii [1] (left). Optical solitons in a microresonator [17] (right)

Although solitary waves were originally discovered as a water wave phenomenon, they have

applications in many fields, including fiber optics, plasma physics, quantum mechanics, molecular

biology, and neuroscience (Figure 1). More generally, many nonlinear, dispersive PDEs exhibit

solitary wave solutions. My research falls into two broad categories: multi-pulse solitary waves

in Hamiltonian systems, and coherent structures in optical lattices. Beyond those, I have also

explored bifurcation structures in a neural network model and systems of coupled oscillators. In

addition to summarizing my research, I will also highlight future research directions and ways in

which I can involve students in my research program.



Multi-pulse solitary waves in Hamiltonian systems

The bulk of my published research concerns coherent structures in Hamiltonian systems; these

systems are characterized by a conserved quantity, such as energy, that remains constant in time.

At a high level, I start with a simple coherent structure, such as a solitary wave, and use it as a

building block to construct more elaborate structures. I then study the stability of these more

complicated structures in terms of their underlying geometry, together with properties of the

simpler structure.

The prototypical nonlinear wave equation has a primary solitary wave solution, also known as

a primary pulse solution, which looks like a single localized “bump” (Figure 2, left). In many

systems, multi-pulse solutions also exist; these are “multi-bump” solitary waves which resemble

multiple, well-separated copies of the primary pulse. (Notably, multi-pulse solutions do not exist

to the KdV equation). The entire multi-pulse travels as a unit, and maintains its shape unless

perturbed. In addition to having applications in nonlinear optics and neuroscience [8], multi-

pulses are interesting mathematically. In my research, I explore the existence and stability of

these multi-pulse structures. A crucial step in this process is determining the spectrum of the

linearization of the underlying system about a multi-pulse. When a multi-pulse is perturbed,

interactions between the individual pulses in the structure are revealed, which are a consequence

of the inherent nonlinearity of the system. The dynamics of these interactions are determined

by the eigenvalues of the linearized system and their corresponding eigenfunctions.

Figure 2: Primary solitary wave solution u(x) to the KdV equation. Left panel is plot of u vs x. Right panel is

plot of ux vs u, showing solitary wave as a homoclinic orbit.

My primary mathematical approach comes from spatial dynamics. From this viewpoint, a solitary

wave is a homoclinic orbit evolving in the spatial variable x. For example, the solitary wave

solution u(x) to the KdV equation which travels to the right with constant speed c (Figure 2,

left panel) is a solution to the second order ODE uxx + 3u2− cu = 0. This can be written as the

two-dimensional dynamical system

d

dx

(
u

v

)
=

(
v

cu− 3u2

)
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Figure 3: Cartoon illustrating construction of a double pulse solution using Lin’s method. Left panel shows

primary pulse solution. Right panel shows two copies of the primary pulse solution (black and blue dotted lines)

placed end-to-end. Double pulse solution (red solid line) is close, but not equal, to this.

by taking v = ux. From this perspective, the solitary wave solution (u(x), v(x)) is a homoclinic

orbit connecting the unstable and stable manifolds of the saddle equilibrium point at the origin

(Figure 2, right panel), which represents the rest state of the system.

From a spatial dynamics perspective, multi-pulses are multi-loop homoclinic orbits. Multi-pulses

can be constructed using Lin’s method [14], a version of the Lyapunov-Schmidt method which

can be used to find solutions that are close to a homoclinic orbit. Heuristically, this process

involves “gluing together” multiple copies of the primary pulse solution end-to-end using small

remainder functions (Figure 3). Lin’s method can also be used to construct periodic orbits and

multi-loop periodic orbits. The existence of multi-pulse solutions is constrained by the geometry

of the primary pulse and the underlying system. In Figure 3, for example, multi-pulses can only

exist when the tail oscillations of the individual pulses overlap in phase.

Figure 4: Possible interaction eigen-

value patterns in a Hamiltonian system.

The first step in the stability analysis of a multi-pulse so-

lution is computing the spectrum of the linearization of the

underlying system about the solution. In general, each pulse

that is added to a multi-pulse structure is associated with one

or more eigenvalues in the spectrum [28], which I call interac-

tion eigenvalues, since they result from nonlinear interactions

between the tails of neighboring pulses. The systems I study

are Hamiltonian, which are not covered by the results of [28]. On one hand, the Hamiltonian

structure is very helpful, since all eigenvalues must come in quartets of the form ±α± βi. This

means that each additional set of interaction eigenvalues must occur in one of the three patterns

in Figure 4. On the other hand, the presence of any eigenvalue with nonzero real part implies

that there is an unstable eigenvalue with positive real part. This means that Hamiltonian sys-

tems cannot be dissipative, which makes stability analysis more difficult. My main results relate

the spectral pattern of the interaction eigenvalues to the underlying geometry of the multi-pulse.

In all cases, the spectral pattern is determined by this geometry.
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Figure 5: Primary pulse (left), out-of-phase double pulse (middle), and in-phase double pulse (right) solutions

for DNLS. Interaction eigenvalue patterns for double pulses are shown in insets. Black dot is a kernel eigenvalue

with algebraic multiplicity 2.

My work makes extensive use of numerical analysis, both to generate hypotheses and to verify

analytical results. For multi-pulses, I start by computing the primary solitary wave solution,

which either involves numerical parameter continuation from a known solution or an energy

minimization method [5]. I then splice together multiple copies of the primary solitary wave

and use a root-finding method such as conjugate gradient to construct the multi-pulse solution.

For stability analysis, I compute the spectrum using an eigenvalue solver on an appropriate

discretization of the linearized system. I will highlight four systems I have studied: the discrete

nonlinear Schrödinger equation, the Chen-McKenna suspension bridge equation, the fifth-order

KdV equation, and a fourth order nonlinear Schrödinger equation. I will then mention some

more recent work, and suggest some future avenues of research.

Discrete nonlinear Schrödinger equation

The discrete nonlinear Schrödinger equation (DNLS)

i
d

dt
un + d(un+1 − 2un + un−1) + |un|2un n ∈ Z

is the discrete analogue to the nonlinear Schrödinger equation (NLS) on the integer lattice. In

addition to being a fundamental model of a nonlinear dynamical system on a lattice, DNLS has

applications to nonlinear optics and condensed matter physics [12]. The parameter d quantifies

the degree of coupling between adjacent lattice sites. For all values of d, DNLS has a stable,

primary pulse solution (Figure 5, left panel). Provided that the individual peaks are separated by

a sufficiently large number of lattice points, I use Lin’s method to prove that multi-pulse solutions

exist as long as the following geometric constraint is satisfied: neighboring peaks must either be

out-of-phase or in-phase [22, Theorem 4]. Furthermore, I prove this that geometry determines

the stability of multi-pulses [22, Theorem 5]. For double pulses, the in-phase double pulse is

unstable, since there is eigenvalue with positive real part, and the out-of-phase double pulse is

neutrally stable, since the entire spectrum lies on the imaginary axis (Figure 5). For general

multi-pulses, the entire structure is unstable if any pair of neighboring peaks is in-phase. The
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Figure 6: Primary pulse solution for Chen-Mckenna (top left). First four double pulse solutions (top right).

Unstable double pulse for n = 2 (bottom left) and neutrally stable double pulse for n = 3 (bottom right).

Interaction eigenvalue patterns for double pulses are shown in insets. Black dot is a kernel eigenvalue with

algebraic multiplicity 2.

only neutrally stable multi-pulses are those in which every pair of neighboring peaks is out-of-

phase. The proof of this result uses Lin’s method to construct the eigenfunctions corresponding

to the interaction eigenvalues. This reduces the spectral problem to finding the eigenvalues of a

matrix.

Chen-McKenna suspension bridge equation

The Chen-McKenna suspension bridge equation

utt + uxxxx + eu−1 − 1 = 0

is a smooth approximation to a model for waves propagating on an infinitely long suspended

beam, and is motivated by observations of traveling waves on suspension bridges [18, 6]. For wave

speeds c between 0 and
√

2, a primary solitary wave solution exists [32], which has exponentially

decaying, oscillatory tails (Figure 6, top left). Provided that the individual peaks are sufficiently

well separated, multi-pulse solutions exist as long as the following geometric constraint is satisfied:

the tail oscillations of neighboring peaks must overlap in-phase (see Figure 6, top left, and cartoon
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in Figure 3). This constraint is a consequence of a specific alignment of the unstable and stable

manifolds which is required for a multi-loop homoclinic orbit to exist. As a result, the distance

between consecutive peaks is, to leading order, an integer multiple of a phase parameter. This

is illustrated in the top right panel of Figure 6, which plots the first four double pulse solutions

on the same graph. As with DNLS, the stability of multi-pulses depends on their geometry.

Double pulses, for example, alternate between unstable (Figure 6, bottom left, corresponding

to even integers) and neutrally stable (Figure 6, bottom right, corresponding to odd integers).

I prove these results using an extension of the Krein matrix [10], a tool which projects the

infinite-dimensional spectral problem onto a finite-dimensional space.

Fifth order KdV equation

The fifth-order Korteweg de-Vries equation (KdV5)

ut − uxxxxx + uxxx + 2uux = 0

is a weakly nonlinear long wave approximation to the capillary-gravity wave problem, and also

has applications to plasma physics and laser optics [26]. Multi-pulse solutions to KdV5 exist

[27], but their stability analysis is complicated due to the fact that the essential spectrum for all

localized solutions comprises the entire imaginary axis. In particular, this means that any purely

imaginary interaction eigenvalues would be embedded in the essential spectrum, which makes

them difficult to locate.

To avoid this issue, I impose periodic boundary conditions on the problem and look instead at

periodic multi-pulses, which are multi-pulses on a periodic domain. From a spatial dynamics

perspective, a periodic multi-pulse is a multi-loop periodic orbit which is close to the primary

homoclinic orbit. These are constructed by “gluing together” multiple copies of the primary pulse

end-to-end in a loop. A periodic double pulse, for example, is constructed by connecting two

single pulses together at both ends (Figure 7, left). Since this construction involves two length

parameters X0 and X1, there is an extra degree of freedom when compared to double pulses

on the real line, which only involve a single length parameter. As a consequence, I prove that

periodic double pulses exist in a continuous family, in which asymmetric periodic double pulses

(those with X0 6= X1) bifurcate from symmetric periodic double pulses (those with X0 = X1) in

a series of pitchfork bifurcations (Figure 7, center) [24]. The advantage of looking at periodic

solutions is that the essential spectrum becomes a discrete set of eigenvalues on the imaginary

axis (blue open circles in Figure 7, right). Purely imaginary interaction eigenvalues can then lie

between these essential spectrum eigenvalues, which avoids the problem of embedded eigenvalues.

Using Lin’s method, I prove that the eigenvalues associated with a periodic multi-pulse can be

found by solving a block matrix equation [24, Theorem 5.3] for λ. To leading order, this is given

by

det

(
K(λ)− 1

2
λM̃K+(λ) λ2McI

−1
2
λMcK

+(λ) A− λ2MI

)
= 0. (1)
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Figure 7: Construction (left) and bifurcation diagram with corresponding interaction eigenvalue pattern (center)

of periodic double pulse solutions to KdV5. Spectrum of neutrally stable periodic double pulses (right) comprising

interaction eigenvalues (red filled circles), essential spectrum eigenvalues (blue open circles), and kernel eigenvalue

with algebraic multiplicity 2 (black square).

The essential spectrum eigenvalues are encoded by the matrix K(λ), which, to leading order, only

depends on the background state and size of the periodic domain; in particular, it is independent

of the periodic multi-pulse solution. The interaction eigenvalues are encoded by the matrix A,

which depends on the geometry of the periodic multi-pulse. M , Mc, and M̃ are Melnikov-type

integrals associated with the primary pulse solution. As long as the periodic domain size is not

too large, the interaction eigenvalues and essential spectrum eigenvalues do not interfere with

each other. For a periodic double pulse, there is a pair of interaction eigenvalues which is either

real or purely imaginary, depending on the geometry of the solution (Figure 7, center). The

eigenvalue pattern switches between real and imaginary at the pitchfork bifurcation points.

There is, however, an additional complication in the periodic case. As the periodic domain size

X = X0 + X1 is increased, the essential spectrum eigenvalues move towards the origin. At a

critical value of X, there will be a collision between one of the essential spectrum eigenvalues

and a purely imaginary interaction eigenvalue. As X is further increased, I prove that a brief

instability bubble is formed, wherein the two eigenvalues collide, move off the imaginary axis,

trace an approximate circle in the complex plane, and recombine on the imaginary axis in a

“reverse” collision (see left panel of Figure 8 for a cartoon) [24, Theorem 5.10]. This instability

bubble, which I call a Krein bubble since the eigenvalues involved in the collision have opposite

Krein signatures, is a direct consequence of the block matrix reduction. A numerical simulation of

the Krein bubble, computed using parameter continuation with the specialized software package

AUTO [7], is shown in the right panel of Figure 8. The location and size of the Krein bubble in

the simulation agree with that predicted by the theory [24].
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Figure 8: Krein instability bubble cartoon (left) and numerical simulation for KdV5 (right).

Fourth order nonlinear Schrödinger equation

The following fourth-order nonlinear Schrödinger equation

iut +
β4
24
uxxxx −

β2
2
uxx + γ|u|2u = 0

is a variant of the nonlinear Schrödinger equation which was introduced to account for the role of

small fourth-order dispersion terms in the propagation of intense laser beams in a bulk medium

with Kerr nonlinearity [11, 31]. Motivated by recent experiments [30], there is particular interest

in the case where β2 = 0, in which case the system exhibits pure quartic dispersion; the resulting

solitary wave solutions are known as pure quartic solitons (PQS). I prove that while multi-pulse

solitary wave solutions exist, they are all unstable due to the presence of at least one interaction

eigenvalue with positive real part [20, Theorems 1 and 2]. To confirm these results numerically, I

obtain PQS solutions by using numerical parameter continuation with a conjugate gradient solver,

and perform time evolution simulations on perturbations of solitary wave solutions using a split-

step Fourier method. The evolution of these perturbations can be explained by the interaction

eigenvalues and their corresponding eigenfunctions. Future work includes extending the model

to incorporate a term characterizing Raman scattering, which leads to symmetry distortion and

reduced pulse amplitude, as well as terms corresponding to gain and loss of energy. Since PQS are

an active area of experimental research, parameters in the model could also be fit to experimental

results. Another avenue of research would be to study a fourth order version of the generalized

Lugiato-Lefever equation (GLLE), which is similar to NLS but contains a convolution term to

model nonlocal effects.
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Other systems and future directions

Other systems of interest include the discrete sine-Gordon equation, nonlocal lattice equations,

and equations on higher dimensional lattices. The discrete sine-Gordon equation

d2

dt2
un = d(∆2u)n − sin(un) n ∈ Z

was introduced to describe the dynamics of crystal lattices, and has since been used in numerous

applications, including a mechanical model for a chain of pendulums coupled with elastic springs,

arrays of Josephson junctions, and DNA dynamics [3]. A particular class of coherent structures

in this system are kinks, which are exponentially localized stationary solutions that connect

adjacent minima of the potential V (u) = cosu. Using similar techniques as with multi-pulses, I

prove the existence of stationary multi-kink solutions as well as analyze their spectral stability

[23]. Another important class of coherent structures is breathers, which are localized, oscillatory

patterns. Future work involves using Lin’s method to construct multi-site breathers by splicing

together multiple, sequential copies of the primary breather, and then analyzing their spectral

stability. As a first step, both the primary breather solution and multi-site breathers can be

computed using either numerical parameter continuation or a shooting method. The spectrum

can then be computed using a numerical eigenvalue solver.

Finally, one nonlocal version of DNLS is

i
d

dt
un =

1

h2s

∑
m6=n

um − un
|m− n|1+2s

+ |un|2un n ∈ Z,

where s > 0 is a fixed parameter specifying the decay of the nonlocal interactions [13]. In the

continuum limit h → 0, this equation converges to an NLS equation with fractional Laplacian

[13]. Applications include a model for charge transport in DNA polymers. Future directions

include studying solitary wave and multi-pulse solutions in this system, as well as whether the

nonlocal interaction term permits other solutions which are not found in DNLS. A final, related

area of interest is coherent structures in DNLS on the square integer lattice Z2, which could

include nonlocal interactions in one or both directions.

Coherent structures in optical lattices

There has been much recent interest in the field of topological photonics, as experimental physi-

cists and engineers have developed new techniques for controlling light propagation in photonic

crystals and optical fibers. One specific application is light transmission through multi-core op-

tical fibers. In particular, optical transmission properties can be tuned by introducing a twist to

the fiber bundle [15, 4, 25] (Figure 9, top). The propagation of light through a twisted optical
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Figure 9: Circular multi-core fiber [15] (top left) and twisted multi-core fiber with eight waveguides [25] (top

right). Bottom panel shows standing wave solution for twisted multi-core fiber with N = 6 and φ = π/6, with

evolution of real part of solution for first four sites on bottom left and magnitude of solution at the sites on

bottom right. Site 1 has maximum intensity, and opposite site 4 has zero intensity.

fiber comprising N waveguides arranged in a circle is described by the coupled mode equations

i
d

dz
cn = k

(
e−iφcn+1 + eiφcn−1

)
+ |cn|2cn n = 1, . . . , N,

where z is the axis of propagation, k is the strength of the nearest-neighbor coupling, and φ is

a parameter representing the twist of the fiber. When the twist parameter φ and the number of

fibers N are related by φ = π/N , I prove that there is a stable standing wave solution of the form

cn(z) = ane
iωz which has a “dark node” with no optical activity (node 4 in Figure 9, bottom)

opposite a “bright node” of maximum intensity (node 1 in Figure 9, bottom) [21]. To do this,

I first used numerical parameter continuation to compute standing wave solutions. This showed

me what types of solutions to expect and the symmetry relationships between the fibers in the

bundle. Using these symmetries, I derived an algebraic relationship between the fiber intensities,

which I then solved using the implicit function theorem.

Future research involves studying coherent structures in more complicated arrays of optical fibers

and correlating the results from the mathematical models with experimental data. One exam-

ple is a waveguide consisting of a square lattice of fibers, in which there are periodic variations

along the waveguide axis causing the nearest-neighbor coupling to vary periodically in z [19].

In particular, for any z, a waveguide is coupled to only one of its four neighbors (Figure 10,

left). This configuration gives rise to localized periodic breather solutions, in which the bulk

of the optical intensity is confined to a single square in the lattice but “jumps” around that
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Figure 10: Cartoon of square lattice with z-dependent coupling (left). At any value of z, only one of the four

coupling functions Jk(z) is nonzero. Log intensity of fundamental breather solution over one period, showing

localization to a single unit square in lattice (center). Square intensity of fundamental breather solution on the

unit square over one period (right).

square counterclockwise(Figure 10, center and right). No systematic mathematical study of the

existence and stability of these solutions has been done to date. Other arrangements of fibers

which are of interest to experimentalists include concentric rings and honeycomb lattices [16].

This research would introduce students to many different computational techniques, including

numerical parameter continuation, shooting methods, and energy minimization methods to gen-

erate solutions; eigenvalue solvers to compute the spectrum of the linearization of the system

about that solution; and numerical ODE and PDE solvers to study how perturbations of the

solution evolve in time.

Beyond optics

Bifurcations in neural models

I have recently been studying bifurcations in a model of a neural network

ẋ = −x +
1√
N
H tanh(gx),

where x = (x1, . . . , xN) represents the firing rate of each neuron in the network [2]. The network

topology and neuronal connection weights are specified by the connectivity matrix H, and the

individual neurons are connected using a sigmoidal hyperbolic tangent activation function. Ad-

justing the parameter g, which represents the global connection strength, leads to bifurcations,

in which the stability and number of equilibrium points in the system change; periodic solu-

tions may also emerge at these bifurcation points. The specific bifurcation structure depends on

symmetries in the matrix H.

For one example, suppose the neurons are grouped into two clusters, one containing excitatory

cells and the other containing inhibitory cells. When g = 0, the origin is a stable equilibrium point
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Figure 11: Bifurcation structure of neural network model as the connection strength parameter g is increased,

showing fixed points (solid lines) and periodic orbits (rings). Symmetric pitchfork bifurcation indicated with filled

circle. Hopf bifurcations indicated with filled squares.

of the system. As g is increased, the origin loses stability in a symmetric pitchfork bifurcation

(filled circle in Figure 11). Multiple branches of equilibrium points emerge from this bifurcation

point due to the symmetries of H. As g is further increased, there is a Hopf bifurcation (filled

squares in Figure 11) on each branch of equilibria, after which point periodic orbit solutions are

found. At a critical value of g, these limit cycles coalesce (dark band in Figure 11), after which

point the system only has a single stable limit cycle. To locate equilibria and bifurcation points,

and to compute periodic solutions, I use numerical parameter continuation with AUTO. I then

use these numerical results as a starting point for theoretical work. For example, the parameter

continuation results suggested a perturbation method that I used to prove the Hopf bifurcations

in Figure 11 exist, and to determine their location to leading order. Future work with students

could include exploring symmetries and bifurcations in the model resulting from other groupings

of neurons, as well as studying the effects of noise on the model. This research would introduce

students to numerical continuation and perturbation methods, which are two essential tools in

computational and applied mathematics.

Coupled oscillators

In the summer of 2021, I supervised an REU in which undergraduate students learned about

different coupled oscillator models and then designed their own research projects to explore these
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models computationally. One example is the Kuramoto model

dθj
dt

= ωj +
K

N

N∑
k=1

sin(θk − θj) j = 1, . . . N,

which was developed to study synchronization in systems of chemical and biological oscillators; it

has numerous applications, including circadian rhythms, chirping crickets, and flashing fireflies.

The model describes a set of N oscillators with phases θj and natural frequencies ωj. Every

oscillator is connected to every other oscillator using a nonlinear sinusoidal function, and the

parameter K controls the strength of this coupling. For a critical value of K, which depends on

the initial distribution of natural frequencies ωj, the oscillators will start to synchronize, despite

their different natural frequencies [29]. As the model evolves in time, the degree of synchrony

can be measured by computing the complex order parameter

reiψ =
1

N

N∑
j=1

eiθj ,

which characterizes the “collective rhythm” of the oscillators [29]. The modulus r quantifies

the phase coherence, with r = 0 representing no synchrony, and r = 1 representing complete

synchrony. My students found that as the coupling parameter K is rapidly varied, the system

gains synchrony faster when K is increased than it loses synchrony when K is decreased. This

hysteresis effect is shown in Figure 12. They will present their results on a poster at the regional

SIAM TX-LA conference. Future work with students includes examining models in which the

connections between oscillators are specified by an adjacency matrix, and exploring a second-

order variant of the Kuramoto model [9] which has applications to electrical power grids.

Figure 12: Order parameter r vs coupling parameter K, as K is increased (solid blue line) then decreased (dotted

orange line). Figure courtesy Jerry Luckenbaugh and Jamie Moseley.
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