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1. Metric Spaces

1.1. Definitions. A metric space is a nonempty set, together with a function called a metric,
which defines a distance between any pair of points in the set. One familiar metric space is
R2, the set of points in the Cartesian plane, with the metric given by the Euclidean distance
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formula. The distance between points p = (x1, y1) and q = (x2, y2) is given by

d(p, q) =
√

(x2 − x1)2 + (y2 − y1)2,

and represents the “straight-line distance” between p and q. An arbitrary metric space is
defined as follows:

Definition 1.1. Let X be an arbitrary set. A function d : X ×X → R is a metric on X
if the following conditions hold for all x, y, z ∈ X:

(i) d(x, y) ≥ 0.
(ii) d(x, y) = 0 if and only if x = y.

(iii) d(x, y) = d(y, x) (symmetry).
(iv) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

We call the pair (X, d) a metric space.

Property (iv) is called the triangle inequality, since it generalizes the familiar statement
from geometry: “The length of a side of a triangle must be less than or equal to the sum
of the lengths of the other two sides”. (If equality holds, the “triangle” has been squished
down to a line segment, so it’s not really a triangle anymore.) From the triangle inequality,
we can derive the so-called “reverse triangle inequality”,

d(x, y) ≥ |d(x, z)− d(z, y)|
which generalizes the statement from geometry: “The length of a side of a triangle must be
greater than or equal to the difference of the lengths of the other two sides”. From now on,
we will assume we are working in a metric space (X, d).

1.2. Examples. Here are some examples of metrics and metric spaces.

(1) The Euclidean distance on Rn is defined by

d(x, y) = |x− y|.
If x = (x1, . . . xn) and y = (y1, . . . , yn), then this is given by

d(x, y) =

√√√√ n∑
k=1

(xk − yk)2.

(2) The discrete metric on any set X is defined by

d(x, y) =

{
0 if x = y

1 otherwise .

(3) Compare three metrics on R2. For x = (x1, x2) and y = (y1, y2), we define
(a) Manhattan distance / taxicab metric / `1 metric:

d1(x, y) = |x1 − y1|+ |x2 − y2|.
(b) Euclidean distance / `2 metric:

d2(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

(c) Maximum distance / chessboard metric / `∞ metric:

d∞(x, y) = max{|x1 − y1|, |x2 − y2|}.
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(4) The maximum (supremum) metric on C([a, b]), the space of continuous, real-valued
functions on the closed interval [a, b], is defined by

d(f, g) = max
x∈[a,b]

|f(x)− g(x)|.

Since a continuous function attains its maximum and minimum on a closed interval
(extreme value theorem), this is well-defined.

(5) Information theory:
(a) Distance between two strings of identical length (Hamming distance): number

of positions at which the two strings are different.
(b) Distance between two arbitrary strings (Levenshtein distance): minimum num-

ber of single-character edits (insertions, deletions or substitutions) required to
change one string into the other.

(c) Damerau-Levenshtein distance: same as Levenshtein distance, except swaps of
adjacent characters are also allowed operations. “More than 80% of all human
misspellings can be expressed by a single error of one of the four types” (Dam-
erau, 1964).

(6) Geodesic distance for connected graphs: number of edges in a shortest path connect-
ing two vertices. (There may not be a unique shortest path, but the geodesic distance
is unique). The graph must be connected to avoid having infinite distances.

1.3. Product metrics. Recall that the (Cartesian) product of two sets X and Y , denoted
X ×Y , is the set of all ordered pairs (x, y), where x ∈ X and y ∈ Y . The product of a finite
sequence of sets X1, . . . , Xn is the set of ordered n-tuples

n∏
k=1

Xk = X1 × · · · ×Xn := {(x1, . . . , xn) : xk ∈ Xk}.

Take a finite sequence of metric spaces (X1, d1), . . . , (Xn, dn). Note that each set can have a
different metric if we like. Then any of the following are metrics on X1 × · · · ×Xn. We call
these product metrics.

(1) d(x, y) =
n∑
k=1

d(xk, yk).

(2) d(x, y) =

√√√√ n∑
k=1

d(xk, yk)2.

(3) d(x, y) max
k=1,...,n

d(xk, yk).

We can also construct metrics on countable products of metric spaces. The countable
product of sets {Xk} is the set of all sequences

∞∏
k=1

Xk :=
{
{xk} : xk ∈ Xk

}
.

In order to define a metric on this countable product, we use the following trick, which allows
us to construct metrics from other metrics. If f : [0,∞) → [0,∞) is an increasing concave
function such that f(x) = 0 if and only if x = 0, then f(d(x, y)) is also a metric. Note that
f does not have to be smooth. Important examples are:

(1) f(x) = min{x, 1}.
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(2) f(x) =
x

1 + x
.

Both of these functions “cut off” the metric at 1, so that the greatest possible distance
between any two points is 1. We can use the second of these “cutoff” functions to define a
metric for a countable product of metric spaces {(Xk, dk)}:

d(x, y) =
∞∑
k=1

1

2k
dk(xk, yk)

1 + dk(xk, yk)
.

Alternatively, we could use the “cutoff” metric min{dk(xk, yk), 1}. We can also replace 1/2k

with the terms from any convergent series of positive terms.

1.4. Sequences. First, we define the convergence of a sequence in a metric space. Intu-
itively, a sequence {xn} converges to a limit L if the elements of the sequence get arbitrarily
close to L.

Definition 1.2. A sequence {xn} converges to L, written xn → L, if d(xn, L)→ 0.

The condition d(xn, L)→ 0 is the convergence of a real-valued sequence, which is defined
in the standard way. We can also write this as follows: xn → L if, for all ε > 0, there exists
N ∈ N such that d(xn, L) < ε for all n ≥ N .

Another important type of sequence in a metric space is a Cauchy sequence. Intuitively, a
sequence {xn} is a Cauchy sequence if its elements get arbitrarily close to each other (rather
than approach a limit).

Definition 1.3. {xn} is a Cauchy sequence if for all ε > 0, there exists N ∈ N such that
d(xn, xm) < ε for all n,m ≥ N .

Since this is annoying to write, we can notate this as d(xm, xn) → 0. Every convergent
sequence is a Cauchy sequence (this follows from the triangle inequality). The converse is
unfortunately not true in general. That being said, there are metric spaces in which every
Cauchy sequence is convergent (even if we cannot determine what that limit is!) Since this
property is so important, we have the following definition.

Definition 1.4. A metric space is complete if every Cauchy sequence is convergent.

An example of a metric space which is not complete is Q with d(x, y) = |x − y|. To see
this, take the sequence {xn}, with x1 = 1 and

xn+1 =
xn
2

+
1

xn
.

This is a Cauchy sequence, but its limit is
√

2, which is not in Q.
An example of a complete metric space is R (the completeness of R follows from its

construction). Using the product metric on Rn (the maximum version of the metric is easiest
here) and the completeness of R, it follows that Rn is complete. Since C is isomorphic to
R2, Cn is complete as well.

At this point, we have two ways to show a sequence {xn} converges.

(1) Use the definition of convergence to show that xn → L. This means that we need a
guess for what L.

(2) Work in a complete metric space, and show {xn} is a Cauchy sequence. This is often
easier, since we do not need a guess for the limit, but it has the drawback of not
giving us the actual limit.
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1.5. Limits and Continuity. First we define the limit of a function between two metric
spaces.

Definition 1.5. Let f : (X, d1) → (Y, d2). Then f(x) → L as x → x0 if either of the
following equivalent definitions holds:

(1) For every ε > 0 there exists δ > 0 (dependent on ε and x0) such that if d2(x, x0) < δ,
d2(f(x), L) < ε.

(2) For every sequence {xn} with xn → x0, f(xn)→ L.

We can use this to define continuity of a function (we will call this the metric space
definition of continuity).

Definition 1.6. f : (X, d1) → (Y, d2) is continuous at x0 if f(x) → f(x0) as x → x0. f
is continuous if f is continuous at x0 for all x0 ∈ X.

We discussed above that C([a, b]) is a metric space with the maximum (supremum) metric.
Our goal is to show that C([a, b]) is a complete metric space. To do that, first we show that
the metric itself is a continuous function.

Proposition 1.1. The metric d is a continuous function from X ×X → R.

Proof. Let D ((a, b), (x, y)) = d(a, x)+d(b, y) be the product metric on X×X. Let (xn, yn)→
(x, y) in (X ×X,D). We will show that d(xn, yn)→ d(x, y), which is equivalent to showing
that |d(xn, yn) − d(x, y)| → 0. Using the triangle inequality on R and the reverse triangle
inequality on X,

|d(xn, yn)− d(x, y)| ≤ |d(xn, yn)− d(x, yn)|+ |d(x, yn)− d(x, y)|
= d(xn, x) + d(yn, y)

= D((xn, yn), (x, y))

→ 0.

�

Next, we define the following two modes of convergence. (There are others, which you
will study in courses in real analysis and probability). For simplicity, we will only consider
real-valued functions here, but the codomain can be any metric space (with the appropriate
adjustments).

Definition 1.7. Consider a sequence of functions {fn}, fn : (X, d)→ R.

(1) fn → f pointwise if |fn(x) − f(x)| → 0 for all x ∈ X. In other words, if you give
me x and ε > 0, I can find a natural number N = N(x, ε) such that |fn(x)−f(x)| < ε
whenever n ≥ N .

(2) fn → f uniformly if the rate of convergence does not depend on x. In other words,
if you give me ε > 0, I can find a natural number N = N(ε) (independent of x) such
that for all x ∈ X, |fn(x)− f(x)| < ε whenever n ≥ N . This is equivalent to

sup
x∈X
|fn(x)− f(x)| → 0.

The supremum metric (also called the uniform metric) on the space of real-valued functions
on (X, d) is defined by

D(f, g) = sup
x∈X
|f(x)− g(x)|.
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Uniform convergence is convergence with respect to this metric. Next, we prove the uniform
limit theorem, which says that the uniform limit of continuous functions is continuous.

Theorem 1.1 (Uniform Limit Theorem). Let {fn} be a sequence of continuous functions
on a metric space (X, d). If fn → f uniformly, then f is continuous as well.

Proof. We will show that f is continuous at x0 ∈ X. Choose any ε > 0.

(1) Since fn → f uniformly, we can find N ∈ N such that supx∈X |fn(x)− f(x)| < ε for
all n ≥ N .

(2) Since fN is continuous at x0, we can find δ > 0 such that if d(x, x0) < δ, |fN(x) −
fn(x0)| < ε.

(3) By the triangle inequality, as long as d(x, x0) < δ,

|f(x)− f(x0)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(x0)|+ |fN(x0)− f(X0)| ≤ 3ε

�

Using all of this, we can show that C([a, b]) is a complete metric space, i.e. every Cauchy
sequence is convergent.

Theorem 1.2. The space C([a, b]) with the uniform metric is a complete metric space.

Proof. Let {fn(x)} be a Cauchy sequence in C([a, b]). Our goal is to find a function f ∈
C([a, b]) such that fn → f , i.e supx∈X |fn(x)− f(x)| → 0.

(1) Since for all x ∈ [a, b], |fn(x)−fm(x)| ≤ sup |fn(x)−fm(x)| → 0, {fn(x)} is a Cauchy
sequence for each x ∈ [a, b].

(2) By the completeness of R, for each x ∈ [a, b], fn(x) converges to some limit in R.
Call this limit f(x).

(3) Next, we show that fn → f uniformly, i.e. supx∈X |fn(x)− f(x)| → 0. For any ε > 0,
choose N ∈ N such that for all x ∈ [a, b] and all m,n ≥ N , |fn(x)−fm(x)| < ε. Since
the metric d(a, b) = |a− b| (i.e. the absolute value on R) is continuous, send m→∞
to get |fn(x)−f(x)| < ε. Since this is true for all x ∈ [a, b], supx∈X |fn(x)−f(x)| < ε,
i.e. fn → f uniformly on [a, b].

(4) f(x) is continuous by the uniform limit theorem.

�

1.6. Open and Closed Sets. In this section, we define open and closed sets of a metric
space (X, d).

Definition 1.8. The ε-neighborhood or open ε−ball of x0 is the set

Bε(x) = {x ∈ X : d(x, x0) < ε}
You may see this notated as B(x, ε) or Uε(x).

We use this to define an open set in a metric space.

Definition 1.9. A subset U ⊂ X is open if for every x ∈ U there exists ε > 0 such that
Bε(x) ⊂ U .

In other words, we can find an open ball around any point in U which is entirely contained
in U . This “open ball property” is so useful, that we can give it a name.

Definition 1.10. x is an interior point of E there exists ε > 0 such that Bε(x) ⊂ U .
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We can then say that a set U is open if it consists entirely of interior points. We also
define a closed set.

Definition 1.11. A subset K ⊂ X is closed if whenever {xn} ⊂ K with xn → x, x ∈ K.

The half-open interval (0, 1] is not closed, since the sequence
{

1
2k

}
converges to 0, but

0 /∈ (0, 1]. Sometimes you will see closed sets defined in terms of limit points.

Definition 1.12. A point x is a limit point of a set E if for every ε > 0, Bε contains a
point in E which is not x. (Note that x may or may not be in E).

The point 0 is a limit point of the half-open interval (0, 1], but 0 /∈ (0, 1]. It follows from
this definition that if x is a limit point of E, there exists a sequence {xn} ⊂ E such that
xn → x. We then have the following alternative definition of a closed set.

Definition 1.13. A subset E ⊂ X is closed if it contains all of its limit points.

We can show that that if K is closed, its complement X \K is open. In fact, topologists
use this as the definition of a closed set, i.e. they say that K ⊂ X is closed if X \K is open.
We can also show the following properties of open and closed sets.

(1) Arbitrary unions of open sets are open.
(2) Finite intersections of open sets are open.
(3) Arbitrary intersections of closed sets are closed.
(4) Finite unions of closed sets are closed.

Topologists actually use these properties to define open sets! A topology on a set X is
a family T of subsets of X which contains X and the empty set; is closed under arbitrary
unions; and is closed under finite intersections. The sets in T are called then called the open
sets.

Finally, we define the closure, interior, and boundary of a set. For all of these, several
equivalent definitions are given.

Definition 1.14. The closure of a set E, denoted E, is defined in any of the following ways:

(1) All points in E together with all limit points of E.
(2) The intersection of all closed sets containing E.
(3) The smallest closed set containing E (i.e. if K is a closed set containing E, then K

contains E).

Definition 1.15. The interior of a set E, denoted Eo, is defined in any of the following
ways:

(1) The set of all interior points of E.
(2) The union of all open sets contained in E.
(3) The largest open set contained in E (i.e. if U is an open set contained in E, then

U ⊂ Eo).

Definition 1.16. The boundary of a set E, denoted ∂E, is defined in any of the following
ways:

(1) The closure of E without the interior of E: ∂E = E \ Eo.
(2) The set of points x such that every ball Bε(x) contains at least one point of E and at

least one point of X \ E.

We note that the boundary of a set is always closed.
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1.7. Equivalent Metrics. Sometimes it does not matter much what metric we use, i.e.
different metrics give us the same convergent sequences and the same open sets.

Definition 1.17. Two metrics d1 and d2 on X are strongly equivalent if there exist
constants C1 and C2 such that for all x, y ∈ X,

C1d1(x, y) ≤ d2(x, y) ≤ C2d1(x, y)

If two metrics on X are strongly equivalent, the open sets and convergent sequences
of X are the same; there may, however, be other differences between the spaces. For finite
dimensional spaces such as Rn, the Euclidean, taxicab, and maximum metrics are all strongly
equivalent. For example, for the maximum and taxicab metrics, we have

max
k=1,...,n

|xk − yk| ≤
n∑
k=1

|xk − yk| ≤ n max
k=1,...,n

|xk − yk|

so the definition of strong equivalence is satisfied with with C1 = 1 and C2 = n. It is a good
exercise to draw the unit balls in the taxicab, Euclidean, and maximum metric in R2. The
take-home message is that it the shape of the open balls usually don’t matter too much.

1.8. Topological Definition of Continuity. It is sometimes easier to use the topological
definition of continuity rather than the metric space definition. This way you can avoid all
of those pesky εs and δs! Topologists define continuity as follows.

Definition 1.18. A function f : X → Y is continuous if f−1(U) is open in X for each
open set U ⊂ Y .

Fortunately, the metric space definition of continuity is equivalent to the topological defi-
nition of continuity.

Theorem 1.3. f : (X, d1)→ (Y, d2) is continuous ⇐⇒ f−1(U) is open in X for each open
set U ⊂ Y .

Proof. We prove this in both directions.
( =⇒ ) Suppose f is continuous using the metric space definition. Let U ⊂ Y be an open

set. We need to show that f−1(U) is open. Let x0 ∈ f−1(U), so that y0 = f(x0) ∈ U . Since
U is open, y0 ∈ Bε(y0) ⊂ U . By continuity of f , there exists δ > 0 such that x ∈ Bδ(x0)
implies f(x) ∈ Bε(y0). Since Bε(y0) ∈ U , x0 ∈ Bδ(x0) ⊂ f−1(U).

( ⇐= ) Suppose f is continuous using the topological definition. Choose any x0 and
any ε > 0, and let y0 = f(x0). Let U = Bε(y), which is open. Then f−1(U) is open and
contains x0, thus there exists δ > 0 such that x0 ∈ Bδ(x0) ⊂ f−1(U). By definition of U ,
d(f(x), f(x0)) < ε whenever d(x, x0) < δ. �

Since the complement of a open set is a closed set, and since the inverse image commutes
with all set operations, we also have the following equivalent statement: f : X → Y is
continuous if f−1(K) is closed in X for each closed set K ⊂ Y .

1.9. Connectedness. Intuitively, a disconnected set has two (or more!) “separate pieces”.
We state this mathematically as follows. There are many equivalent definition of connect-
edness. I like this one.
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Definition 1.19. A subset E is disconnected if we can find two disjoint, nonempty open
sets A and B such that E ⊂ A∪B and both E∩A and E∩B are nonempty; E is connected
if this is not possible.

Here is another common definition you will see (i.e. the one in Rudin and Munkres). The
advantage of this definition is that it defines a disconnected set as actually being split up
into two separate pieces.

Definition 1.20. Two sets A and B are separated if both A∩B and A∩B are empty. A
subset E of X is disconnected if it is the union of two nonempty, separated sets. A subset
E of X is connected if this is not possible.

In the case of the real line, we can say exactly what the connected subsets are. Before we
do that, we define an interval in the real line.

Definition 1.21. A subset I ⊂ R is an interval if, for all x and y in I, every real number
between x and y is in I as well.

Examples of intervals include the open intervals (a, b), the closed intervals [a, b], and
unbounded intervals such as [a,∞). We then have the following proposition.

Proposition 1.2. The connected subsets of R are intervals and points.

Proof. Let E be a subset of R. As an edge case, if E contains a single point, then E is
connected. Therefore, we can assume that E contains at least two points. We will show that
E is connected ⇐⇒ E is an interval, by proving the two contrapositives.

( =⇒ ) Show that if E is not an interval, than E is not connected. Suppose E is not an
interval. Then we can find x < y < z with x, z ∈ E and y /∈ E. Then E ⊂ (−∞, y)∪ (y,∞),
which implies that E is not connected.

(⇐= ) Show that if E is not connected, then E is not an interval.

(1) Suppose E is not connected. Then we can write E = A ∪ B, where A and B are
separated, i.e. both A ∩B and A ∩B are empty.

(2) Let x ∈ A, y ∈ B, and without loss of generality, take x < y.
(3) Let z = sup (A ∩ [x, y]). Then z ∈ A. Since A and B are separated, z /∈ B, which

implies x ≤ z < y. There are two possibilities to consider: z /∈ A and z ∈ A.
(4) If z /∈ A, then x < z < y with z /∈ A ∪B = E, so E is not an interval.
(5) If z ∈ A, then z /∈ B. Therefore we can find w ∈ (z, y) such that w /∈ B. (If this were

not possible, then z would be in B). Since w > z, w /∈ A as well (by the definition of
z as the supremum). Since x ≤ z < w < y and w /∈ A∪B = E, E is not an interval.

�

Using this, we can completely characterize the open sets of R.

Proposition 1.3. Any nonempty open set in R is the finite or countable union of disjoint
open intervals.

Proof. Let U be an open set in R.

(1) On the set U , define the equivalence relation x ∼ y if x, y ∈ I ⊂ U , where I is
connected. This partitions U into disjoint equivalence classes, which are the called
the connected components of U .
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(2) Let Ux be the connected component containing x. This is the largest connected
subset of U which contains x. In other words, if I is an interval containing x, then
I ⊂ Ux.

(3) By the property of equivalence classes, we can write U as the union of disjoint equiv-
alence classes. In this case, that means we can find a subset F ⊂ E such that

U =
⋃
x∈F

Ux,

and the elements in the union are all disjoint.
(4) Next, we show each Ux is an open interval. Since Ux is connected, it is an interval

(by the previous proposition). Let y ∈ Ux. Since U is open, we can find ε > 0 such
that Bε(y) = (y − ε, y + ε) ⊂ U . We will show that Bε(y) ⊂ Ux.

(5) We note that Bε(y) and Uy are both intervals containing y. Since Uy is the largest
interval containing y, Bε(y) ⊂ Uy.

(6) Since the element y is shared by the equivalence classes Uy and Ux, it follows that
Ux = Uy. This implies that Bε(y) ⊂ Ux, therefore Ux is open.

(7) We have shown that U is the union of disjoint open intervals. Since the rational
numbers Q are dense in R, we can find a rational number inside each of these intervals;
furthermore, these rational numbers are distinct, since the open intervals are disjoint.
Since Q is countable, we conclude that U is the disjoint union of at most countably
many open intervals.

�

Finally, we show that connectedness is a topological property, i.e. it is preserved by
continuous functions.

Theorem 1.4. If E ⊂ X is connected and f : X → Y is continuous, then f(E) is connected.

Proof. We employ proof by contradiction. Assume that E is connected.

(1) Suppose the conclusion is not true, i.e. f(E) is disconnected. Then, by the definition
of a disconnected set, f(E) ⊂ A ∪ B, where A, B are disjoint, nonempty open sets
with F (E) ∩ A 6= ∅ and F (E) ∩B 6= ∅.

(2) It follows that E ⊂ f−1(A)∪ f−1(B), both of which are open by the continuity of f .
(3) Since F (E) ∩ A 6= ∅, f−1(A) 6= ∅ and f−1(A) ∩ E 6= ∅. Similarly, f−1(B) 6= ∅ and

f−1(B) ∩ E 6= ∅.
(4) Finally, since the inverse image commute with set operations, f−1(A) ∩ f−1(B) =

f−1(A ∩B) = ∅.
(5) Thus E is disconnected, which is not true.

�

The intermediate value theorem from calculus follows directly from this.

Corollary 1.1 (Intermediate Value Theorem (IVT)). Let f be continuous on [a, b]. Then
for every c (strictly) between f(a) and f(b) there exists x ∈ (a, b) such that f(x) = c.

What is curious (and really cool!) is that the derivative of a function also has the inter-
mediate value property, regardless of whether the derivative itself is continuous.

Theorem 1.5 (Darboux). Suppose f : R → R is differentiable, and let a < b. Then for
every c (strictly) between f ′(a) and f ′(b), there exists x ∈ [a, b] such that f ′(x) = c.
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Proof. We proceed in the following steps.

(1) Without loss of generality, take f ′(a) < c < f ′(b) (otherwise replace f with −f).
(2) Define g(x) = f(x) − cx. Since g is continuous and [a, b] is closed, g must attain a

minimum somewhere on [a, b].
(3) First, we show that this minimum cannot be at a. If g attains its minimum at a,

then g(x)− g(a) ≥ 0 on [a, b], thus for xin(a, b],

g(x)− g(a)

x− a
≥ 0.

This implies from the definition of the derivative that g′(a) ≥ 0, which cannot be the
case since

g′(a) = f ′(a)− c < 0.

(4) Similarly, we show that this minimum cannot be at b.
(5) Therefore, the minimum is at a point x ∈ (a, b). Since this is a local minimum,

g′(x) = 0, which implies f ′(x) = c.

�

1.10. Compactness. Subsets of Rn that are closed and bounded (e.g. closed boxes) have
nice properties. The concept of compactness generalizes this idea of “closed and bounded”
to arbitrary spaces. A rough overview of the development of the mathematical concept of
compactness is as follows. The first important result was proved by Bolzano in 1817 (as a
lemma to prove the IVT), and then rediscovered by Weierstrass 50 years later. The theorem
(which was originally proved on R) bears both of their names.

Theorem 1.6 (Bolzano-Weierstrass). Every bounded sequence in Rn has a convergence sub-
sequence.

Proof. Bolzano’s proof uses the bisection method, a.k.a. “slicey-dicey”. For convenience, we
will prove the theorem on R, although the proof works the same way for Rn. Let {xn} be a
bounded sequence in R. Then {xn} fits inside a closed interval I1 = [a, b].

(1) First, suppose {xn} has finite range {a1, . . . , an}, i.e. there are only finitely many
distinct terms in the sequence. Then one of these, say ak, must appear infinitely many
times. This implies that the constant subsequence consisting only of the element ak
is a convergent subsequence.

(2) With that out of the way, we may assume {xn} has infinite range. Cut I1 in half.
Then (at least) one half must contain infinitely many terms of {xn}. Call that half I2.
Cut I2 in half, and let I3 be the half which contains infinitely many terms of {xn}.
Keep doing this to get a sequence of closed, nested intervals I1 ⊃ I2 ⊃ I3 ⊃ . . . .
The lengths of these intervals go to 0, since each interval has half the length of the
previous one.

(3) We can show that the intersection of a sequence of closed, nested intervals {Ik} is
nonempty (this is sometimes called the Nested Intervals Theorem). Since the interval
lengths go to 0, this intersection must be exactly one point x∗. (The same idea works
in Rn for nested boxes).

(4) It follows that x∗ is a limit point of {xn}. Since x∗ is a limit point of {xn}, we can
find a subsequence {xnk

} of {xn} which converges to x∗.

�



12 ROSS PARKER

In the late 19th century, a similar idea was applied to spaces of functions, in particular
C([a, b]). A teaser is the following theorem. We will define equicontinuity in the next section.

Theorem 1.7 (Arzela-Ascoli). Every sequence in C([a, b]) which is uniformly bounded and
equicontinuous has a convergence subsequence.

The term compactness was first used by Fréchet in 1905 to describe a set for which every
sequence has a convergent subsequence. Today, this property is usually called sequential
compactness.

Definition 1.22. A subset K of X is sequentially compact if every sequence in K con-
tains subsequence which converges to an element of K.

The topological definition of compactness has its origins with Heine in 1870, who proved
that every continuous function on [a, b] is uniformly continuous (we will define that shortly).
In the process, he proved that, given a family of countably many open intervals which cover
[a, b], you can select a finite number of them which still cover [a, b]. This was generalized
into the modern, topological definition of compactness.

Definition 1.23. A subset K of X is compact if any open cover of K has a finite subcover.
In other words, given any collection of open sets whose union contains K, you can select a
finite number of them whose union still contains K.

It turns out that, in metric spaces, compactness and sequential compactness are equivalent.
In fact, as we shall soon see, there are three equivalent criteria. Before we get to that, we
need one more definition.

Definition 1.24. A subset K of X is totally bounded if, for every ε > 0, we can find a
finite set of elements {x1, . . . , xn} ⊂ K such that

K ⊂
n⋃
k=1

Bε(xk).

In other words, for any ε > 0, K can be covered by a finite number of ε-balls.

We start with the following proposition, which is an interesting result in its own right.

Proposition 1.4. Suppose {xn} is a Cauchy sequence, and contains a subsequence {xnk
}

which converges to x∗. Then xn → x∗.

Proof. By the triangle inequality,

d(xn, x
∗) ≤ d(xn, xnk

) + d(xnk
, x∗)→ 0

as n, k →∞. �

We can now state the main equivalence theorem regarding compactness in metric spaces.

Theorem 1.8 (Compact Equivalence Theorem). Let (X, d) be a metric space with K ⊂ X.
Then the following are equivalent:

(i) K is compact.
(ii) K is sequentially compact.

(iii) K is complete and totally bounded.
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Proof. We will prove that (i) =⇒ (ii), (ii) =⇒ (iii), and (iii) =⇒ (i).
(i) =⇒ (ii): Suppose K is compact. We employ proof by contradiction. Let {xn} be

a sequence in K, and assume (for a contradiction) that {xn} does not have a convergent
subsequence, i.e. no subsequence converges to any element of K. Then for every x ∈ K, we
can find a radius ε(x) such that Bε(x)(x) contains only finitely many elements of {xn}. Since
the set of all open balls Bε(x)(x) is an open cover for K, and K is compact, we can find a
finite subcover for K. In other words, we can find a finite set of points x1, . . . , xn ∈ K such
that

K ⊂
n⋃
k=1

Bε(xk)(xk).

Since each Bε(x)(x) contains finitely many elements of the sequence {xn}, this implies that
K only contains finitely many elements of the sequence {xn}, which is impossible.

(ii) =⇒ (iii): Suppose that K is sequentially compact.

(1) First, we show that K is complete, i.e. all Cauchy sequences converge. Let {xn} be
a Cauchy sequence in K. By sequential compactness, {xn} has a subsequence which
converges to x∗ ∈ K. By the prior proposition, xn → x∗, and so K is complete.

(2) We employ proof by contradiction. Suppose K is not totally bounded. Then there
exists ε > 0 such that K cannot be covered by finitely many open balls Bε(xk). Define
a sequence {xn} as follows. Start by choosing any x1 ∈ K. Then choose

x2 ∈ K \Bε(x1)

x3 ∈ K \ (Bε(x1) ∪Bε(x2))

x3 ∈ K \ (Bε(x1) ∪Bε(x2)) ∪Bε(x3))

...

In other words, each element xk in the sequence lies outside all of the previous ε-balls.
This process never terminates, otherwise K could in fact be covered by finitely many
ε-balls. By sequential compactness, {xn} has a convergent subsequence, but this is
impossible since d(xj, xk) ≥ ε for all j 6= k.

(iii) =⇒ (i): Suppose K is complete and totally bounded. Once again, we employ proof
by contradiction. Let {Uα}α∈A be an open cover of K, and assume that there is no finite
subcover. We construct the following sequence of sets.

(1) Take ε1 = 1/2. Since K is totally bounded, we can find points y1
1, . . . , y

1
n(1) such that

K ⊂
n(1)⋃
k=1

B1/2(y1
k).

Since no finite subcover of {Uα} covers K, no finite subcover can cover at least one
of the open balls B1/2(y1

k) (otherwise the finite subcover would cover K). We will
call this “uncoverable” open ball the “bad ball”. Rearrange the {y1

k} to put the “bad
ball” at the beginning, i.e. the “bad ball” is labeled B1/2(y1

1). Let

B1 = B1/2(y1
1) ∩K.

Note that B1 cannot be covered by finitely many Uα.
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(2) Repeat this for ε2 = 1/22. Again, since K is totally bounded, we can find points
y2

1, . . . , y
2
n(2) such that

K ⊂
n(2)⋃
k=1

B1/22(y
2
k).

Since B1 cannot be covered by finitely many Uα, no finite subcover can cover at least
one of the sets B1 ∩ B1/22(y

2
k). Again, rearrange the {y2

k} so that B1/22(y
2
1) is the

“bad ball”, and let

B2 = B1 ∩B1/22(y
2
1).

Again, B2 cannot be covered by finitely many Uα.
(3) Repeat this process with εn = 1/2n to get a nested sequence of nonempty sets

K ⊃ B1 ⊃ B2 ⊃ B3 ⊃ . . .

such that Bn ⊂ B1/2n(yn1 ) for some yn1 ∈ K, and none of the Bn can be covered by
finitely many Uα. We note that each set Bn is contained in a ball of radius 1/2n.

(4) For each n ∈ N, choose xn ∈ Bn. Since the sets {Bn} are nested, and each Bn is
contained in a ball of radius 1/2n, {xn} is a Cauchy sequence. Since K is complete,
xn → x∗ ∈ K. Furthermore, x∗ ∈ Bn for all n ∈ N.

(5) Since {Uα} covers K, x∗ ∈ Uα0 for some α0. Since Uα0 is open and the Bn are nested,
shrinking, and contain x∗, Bn ⊂ Uα0 for sufficiently large n, which contradicts the
fact that no Bn can be covered by finitely many Uα.

�

As a corollary, closed subsets of compact sets are compact.

Corollary 1.2. Let K be a compact subset of a metric space X. If A ⊂ K is closed, then
A is compact.

Proof. Let {xn} be a sequence in A. Then there is a subsequence xnk
→ x∗ ∈ K, since K is

sequentially compact. Since A is closed, x∗ ∈ A. It follows that A is sequentially compact,
thus A is compact by the compact equivalence theorem. �

Next, we show that compact subsets of metric spaces are closed.

Proposition 1.5. Compact subsets of metric spaces are closed.

Proof. Let K be a compact subset of metric space X. We will show that X\K is open, which
implies that K is closed. Choose any x ∈ X \K, i.e. x 6= K. For all y ∈ K, let r(y) be the
distance r(y) = 1

2
d(y, x) > 0, since y 6= x. The collection of open balls {Br(y)(y)}y∈K is an

open cover for K, and none of them contain x by our definition of r(y). By compactness, we
can find a finite subcover {Br(y1)(y1), . . . , Br(yn)(yn)} of K. Let r = min{r(y1), . . . , r(yn)}.
Then Br(x) does not intersect this finite subcover, which means that Br(x) lies outside of
K. It follows that Br(x) ⊂ X \K, from which we conclude that X \K is open. �

Although it is nice to have three equivalent criteria for compactness in metric spaces, they
are still annoying to check. Fortunately, we have a nice criterion for compactness in Rn,
which generalizes the idea that closed, bounded intervals are “special”.

Theorem 1.9 (Heine-Borel). A subset K ⊂ Rn is compact ⇐⇒ K is closed and bounded.
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Proof. We prove both directions.
( =⇒ ) Since Rn is a metric space and K is compact, K is closed and totally bounded.

Since a totally bounded set is bounded, K is bounded.
(⇐= ) Since K is bounded, it fits inside a closed box B in Rn. Since K is closed, and closed

subsets of compact sets are compact, it suffices to show that B is compact. We will show
that B is sequentially compact. Since B is bounded, it follows from the Bolzano-Weierstrass
theorem that any sequence in B has a convergent subsequence, whose limit must be in B
since B is closed. Since B is sequentially compact, it is compact by the compact equivalence
theorem. �

Next, we show that compactness is also a topological property, i.e. it is preserved by
continuous functions. Before we do this, we recall two important relations involving f and
the inverse image operation f−1.

(1) f(f−1(E)) ⊂ E, with equality if f is surjective.
(2) f−1(f(E)) ⊃ E, with equality if f is injective.

Theorem 1.10. Let f : (X, d1)→ (Y, d2) be continuous, and K compact in X. Then f(K)
is compact in Y . In other words, continuous images of compact sets are compact.

Proof. Here, it makes sense to use the topological definition of compactness.

(1) Let {Uα}α∈A be an open cover of f(K).
(2) Since f is continuous, f−1(Uα) is open in X, thus {f−1(Uα)}α∈A is an open cover for

K.
(3) Since K is compact, we can find a finite subcover {f−1(U1), . . . , f−1(Un)} for K.
(4) Sending the finite subcover back through f , {f(f−1(U1)), . . . , f(f−1(Un))} covers K.
(5) Since f(f−1(Uk)) ⊂ Uk, {U1, . . . , Un} is a finite subcover for f(K).

�

The extreme value theorem is a direct consequence of this theorem.

Theorem 1.11 (Extreme Value Theorem). Let f : (X, d) → R continuous and K ⊂ X
compact. Then f attains an absolute maximum and an absolute minimum on K.

Proof. Since K is compact, f(K) ⊂ R is compact, thus closed and bounded by Heine-
Borel. �

Finally, we will prove a generalization of the theorem proved by Heine that continuity
implies uniform continuity on a compact set. Uniform continuity is defined as follows.

Definition 1.25. A function f : (X, d1)→ (Y, d2) is uniformly continuous if, for every
ε > 0, there exists δ > 0 (dependent on ε, but not on x) such that whenever d1(x, y) < δ,
d2(f(x), f(y)) < ε.

The main difference between uniform continuity and continuity is that, for a given ε > 0,
the same δ must work for all x, i.e. δ is independent of x. For simplicity, we will prove the
uniform continuity theorem for real-valued functions, although it same result holds (with the
same proof) for any pair of metric spaces.

Theorem 1.12 (Uniform Continuity Theorem). Let f : (X, d) → R be continuous and let
K ⊂ X compact. Then f is uniformly continuous on K.

Proof. We present two proofs here. The first is the standard constructive proof.
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(1) Let ε > 0. Since f is continuous on K, for every x0 ∈ K we can find δ(x0) such
that |f(x) − f(x0)| < ε/2 whenever d(x, x0) < δ(x0). In general, the δ(x0) will be
different.

(2) The collection of open balls
{
Bδ(x)/2(x)

}
x∈K is an open cover for K. By compactness,

we can find a finite subcover. In other words, we can find points x1, . . . , xn ∈ K such
that

K ⊂ Bδ(x1)/2(x1) ∪ · · · ∪Bδ(xn)/2(xn).

(3) Let δ = min{δ(x1)/2, . . . , δ(xn)/2} > 0. (We need this minimum to be well-defined
and positive, which is why we need compactness to give us a finite subcover).

(4) Choose any x, y ∈ K with d(x, y) < δ. We will show that |f(x)− f(y)| < ε.
(5) Because of the finite subcover, x must be inside one of the finite set of open balls

Bδ(xk)/2(xk). It follows that d(x, xk) < δ(xk)/2 for some k ∈ {1, dots, n}.
(6) By the triangle inequality,

d(y, xk) ≤ d(y, x) + d(x, xk) < δ + δ(xk)/2 ≤ δ(xk),

since δ ≤ δ(xk)/2.
(7) Finally, by the triangle inequality and the continuity of f ,

|f(y)− f(x)| ≤ |f(y)− f(xk)|+ |f(xk)− f(x)| ≤ ε

2
+
ε

2
= ε,

since both y and x are within a distance δ(xk) of xk.

Alternatively, we may use proof by contradiction.

(1) Suppose the conclusion is not true. Then for a specific ε > 0, we can find sequences
{xn}, {yn} ⊂ K such that d(xn, yn)→ 0, but |f(xn)− f(yn)| ≥ ε.

(2) Since K is compact, thus sequentially compact, {xn} has a convergent subsequence
xnk
→ x∗, where x∗ ∈ K, since K is closed.

(3) Since d(xn, yn)→ 0, ynk
→ x∗ as well.

(4) By the triangle inequality,

0 < ε ≤ |f(xnk
)− f(ynk

)| ≤ |f(xnk
)− f(x∗)|+ |f(x∗)− f(ynk

)|︸ ︷︷ ︸
both → 0 by continuity of f

→ 0,

which is a contradiction.

�

2. Arzela-Ascoli theorem

The Arzela-Ascoli theorem is the analogue of the Heine-Borel theorem for the metric space
C([a, b]), the space of real-valued functions on [a, b]. It gives criteria for compactness that
are (hopefully!) easier to check. We will prove the theorem on the more general space of real-
valued, continuous functions on a compact subset K of a metric space (X, d). This space
is denoted C(K) (sometimes you will see C0(K) or C(K,R)), and we use the supremum
(maximum) metric, which is defined by

d(f, g) = max
x∈K
|f(x)− g(x)|.

Since f and g are continuous, and K is compact, the maximum is well-defined by the Extreme
Value Theorem. In addition, C(K) is complete; the proof is identical to that for C([a, b]).
Before we can state the theorem, we will need the following two definitions.
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Definition 2.1. A subset A ⊂ C(K) is uniformly bounded if there exists M ≥ 0 such
that |f(x)| ≤M for all f ∈ A and x ∈ K. This can also be written as

sup
f∈A,x∈K

|f(x)| ≤M.

Next, we define equicontinuity of a set of functions. This is essentially the same as uniform
continuity, except the same δ must work for every function in the set.

Definition 2.2. A subset A ⊂ C(K) is equicontinuous if, for every ε > 0, there exists
δ > 0 (dependent on ε, but not on f or x) such that whenever d(x, y) < δ, |f(x)− f(y)| < ε
for all f ∈ A. Alternatively, we can write this as

sup
f∈A
|f(x)− f(y)| → 0 as d(x, y)→ 0.

Before we can prove the theorem, we will need a result which is interesting in its own
right. You will see the concept of separability (which is unfortunately named!) again in real
analysis.

Definition 2.3. A metric space is separable if it contains a countable dense subset.

Here are some examples of separable metric spaces.

(1) R contains Q as countable dense subset. In general Rn contains Qn as a countable
dense subset.

(2) C([0, 1]) is separable. It follows from the Weierstrass Approximation Theorem and
the fact that Q is countable that Q[x], the set of polynomials with rational coefficients,
is a countable dense subset of C([0, 1]).

Next, we show that every compact metric space is separable.

Proposition 2.1. Every compact metric space K contains a countable dense subset S.

Proof. Choose any positive integer n. Then the collection of open balls {B1/n(x)}x∈K with
radius 1/n is an open cover for K. By compactness of K, we can find a finite collection of
points Sn = {xn1 , . . . , xnk(n)} ⊂ K, where k(n) depends on n, such that

K ⊂
k(n)⋃
j=1

B1/n(xnj ).

The set Sn is a finite set of points in K, and every point in K is “1/n-close” to a point in
Sn. Perform this procedure for all n ∈ N , and take the union

S =
∞⋃
n=1

Sn.

S is dense in K, since, for any ε > 0 and x ∈ K, every open ball Bε(x) contains a point in
S. S is countable, since it is the countable union of finite sets. �

We can now state and prove the Arzela-Ascoli theorem.

Theorem 2.1 (Arzela-Ascoli). Let K be a compact subset of a metric space (X, d). If
a sequence of functions {fn} ∈ C(K) is uniformly bounded and equicontinuous, it has a
uniformly convergent subsequence. Thus if a subset A ⊂ C(K) is closed, uniformly bounded,
and equicontinuous, it is compact.
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Proof. Let {fn} be an equicontinuous and uniformly bounded, with uniform bound M . Since
K is a compact metric space, it is separable by the above proposition, therefore we can find
a countable dense subset S = {xn} ⊂ K. The first step is to use a diagonal argument to
find a subsequence of {fn} which converges pointwise on S.

(1) We start by applying the sequence of functions {fn} to x1. Consider the real-valued
sequence {fn(x1)}. Since |fn(x1)| ≤ M for all n, {fn(x1)} contains a convergent
subsequence by Bolzano-Weierstrass. We will denote this convergent subsequence by
{f1,n(x1)}. The corresponding functions form a subsequence {f1,n} of {fn}.

(2) Next, we apply the sequence of functions {f1,n} from the previous step to x2, and
form the real-valued sequence {f1,n(x2)}. This sequence is also bounded by M , so it
contains a convergent subsequence, which we will denote {f2,n(x2)}. The correspond-
ing functions {f2,n} converge at both x1 and x2. (We note that {f2,n}is a subsequence
of {f1,n}, which is in turn a subsequence of the original sequence {fn}, i.e we have
constructed a subsequence of a subsequence!)

(3) Iterate this procedure to get a countable collection of subsequences of the original
sequence {fn}, which we can depict in the following grid.

f1,1 f1,2 f1,3 . . .
f2,1 f2,2 f2,3 . . .
f3,1 f3,2 f3,3 . . .

...
...

...
...

By construction, each row in the grid is a subsequence of the previous row, and
the sequence of functions in row n converges at the points x1, . . . xn.

(4) Take the diagonal sequence {gn} = {fn,n}. This sequence is a subsequence of the
original sequence {fn}, and it converges at every point xn ∈ S. (It turns out that we
don’t care what these limits actually are).

We have constructed a subsequence {gn} of {fn} which converges on a dense subset of K.
The last step is to show that {gn} converges uniformly on K.

(1) Let ε > 0. By the definition of equicontinuity, we can find δ > 0 such that whenever
d(x, y) < δ, |gn(x)− gn(y)| < ε for all n ∈ N.

(2) Since S = {xn} is dense in K, every point x ∈ K lies inside Bδ(xn) for some xn.
Thus the collection of open balls {Bδ(xn)}xn∈S is an open cover for K. Since K is
compact, we can find a finite subcover, i.e. there exists a positive integer n0 such
that

K ⊂
n0⋃
k=1

Bδ(xk).

Let S0 = {x1, . . . , xn0}. Then for every x ∈ K, d(x, xk) < δ for some xk ∈ S0.
(Alternatively, we can construct S0 directly by choosing n such that 1/n < δ, covering
K with (1/n)−balls at each point, extracting a finite subcover, and letting S0 be the
set of the centers of the balls in the finite subcover).

(3) The sequence of functions {gn} converges at the finite set of points S0. This means
that each real-valued sequence {gn(xk)}, for k = 1, . . . n0, is convergent, and therefore
is a Cauchy sequence. Since this is a finite set of sequences, we can find a positive
integer N such that for all m,n ≥ N , |gm(xk)− gn(xk)| < ε for all xk ∈ S0.
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(4) Choose any x ∈ K, and select xk ∈ S0 such that d(x, xk) < δ according to step (2).
For m,n ≥ N , by the triangle inequality,

|gn(x)− gm(x)| ≤ |gn(x)− gn(xk)|+ |gn(xk)− gm(xk)|+ |gm(xk)− gm(x)| < 3ε,

where the first and third terms on the RHS are less than ε by equicontinuity, and the
second term is less than ε by step (3). This implies that {gn(x)} is a (real-valued)
Cauchy sequence for all x.

(5) Since {gn(x)} is a Cauchy sequence for all x, it follows from the completeness of R
that gn(x)→ g(x) for all x ∈ K. Taking m→∞ above, we have

|gn(x)− g(x)| ≤ 3ε

for all x ∈ K and n ≥ N . Since this is independent of x, the convergence is uniform.

We have successfully found a subsequence {gn} of {fn(x)} which converges uniformly on K.
To prove the second statement of the theorem, let A ⊂ C(K) be closed, uniformly bounded,
and equicontinuous. By what we have already proved, any sequence {fn} ⊂ A must contain
a convergent subsequence fnk

→ f . Since A is closed, the limit f ∈ A, so A is sequentially
compact. It follows that A is compact by the compact equivalence theorem. �

We also have a partial converse to the Arzela-Ascoli theorem.

Theorem 2.2. Let K ⊂ (X, d) be compact. Then if A ⊂ C(K) is totally bounded, it is
uniformly bounded and equicontinuous.

Proof. The idea behind the proof is to take an arbitrary function f ∈ A and show that f
is bounded by a constant which is independent of f , and f is uniformly continuous with δ
depending on ε only, i.e. independent of f . We proceed as follows.

(1) Let ε > 0. Using the definition of totally bounded, there exists a finite collection of
functions f ε1, . . . , f

ε
n(ε) ∈ A, where the number of functions n(ε) depends on ε, such

that

A ⊂
n(ε)⋃
k=1

Bε(f
ε
k).

The open balls Bε(f
ε
k) are defined using the maximum (supremum) metric.

(2) Choose any f ∈ A. Then f ∈ Bε(f
ε
k) for some k ∈ {1, . . . , n(ε)}. In particular, this

means that supx∈K |f(x)− f εk(x)| < ε.
(3) First, we show uniform boundedness. By the triangle inequality

sup
x∈K
|f(x)| ≤ sup

x∈K
|f(x)− f εk(x)|+ sup

x∈K
|f εk(x)|

≤ ε+ max
j=1,...,n(ε)

sup
x∈K
|f εj (x)|︸ ︷︷ ︸

define this to be M , which is independent of f

= M <∞,

where supx∈K |f εj (x)| is finite by the extreme value theorem, and we are taking the
maximum over a finite set. Since M is independent of f , we conclude that A is
uniformly bounded.
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(4) Next, we show equicontinuity. Using the triangle inequality again,

|f(x)− f(y)| ≤ |f(x)− f εk(x)|+ |f εk(x)− f εk(y)|+ |f εk(y)− f(y)|
≤ 2ε+ max

j=1,...,n(ε)
|f εj (x)− f εj (y)|.

(5) By the uniform continuity theorem, each function f εj (x) is uniformly continuous on
K. This means that for all j = 1, . . . , n(ε), we can find δj > 0 such that if |x−y| < δj,
|f εj (x)− f εj (y)| < ε. Let δ = min{δ1, . . . , δn(ε)}, which is positive since we are taking
the minimum of a finite set of positive real numbers. Thus, whenever |x− y| < δ,

max
j=1,...,n(ε)

|f εj (x)− f εj (y)| < ε.

(6) Combining the previous two steps, if |x− y| < δ, then

|f(x)− f(y)| < 3ε.

Since δ is independent of f , we conclude that A is equicontinuous.

�

We would like criteria which are easier to check than uniform boundedness and equicon-
tinuity. Here are some results of that nature. First, we define Lipschitz continuity, which
shows up in many contexts, including existence and uniqueness of solutions to ODEs. Again,
we define this for real-valued functions, but the definition extends to any metric space.

Definition 2.4. A function f : (X, d)→ R is Lipschitz continuous (or just Lipschitz) if
there exists a positive constant L > 0 (the Lipschitz constant) such that for all x, y ∈ X,

|f(x)− f(y)| ≤ Ld(x, y).

It is not difficult to show that Lipschitz continuity implies uniform continuity. For function
from R to R, the Lipschitz condition reduces to |f(x) − f(y)| ≤ L|x − y|. This is trivially
true for x = y, thus for x 6= y we can divide both sides by |x− y| to obtain the condition

|f(x)− f(y)|
|x− y|

≤ L.

Intuitively, the Lipschitz constant L puts a bound on the slopes of all of the possible secant
lines of f . A Lipschitz function is “nice” in the sense that it “does not change too fast”. If
f : R → R is continuously differentiable (which is denoted C1) and f ′(x) is bounded by L,
it follows from the mean value theorem that f is Lipschitz continuous with constant L.

Lemma 2.1. Suppose f : R ⊂ R→ R is continuously differentiable, and |f ′(x)| ≤ L. Then
f is Lipschitz continuous, with Lipschitz constant L.

Proof. Choose any distinct points x and y in R. Then by the mean value theorem, there
exists a point c between x and y such that

f(x)− f(y)

x− y
= f ′(c).

Taking absolute values and rearranging, this becomes

|f(x)− f(y)| = |f ′(c)‖x− y| ≤ L|x− y|,
which is the desired result. �
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In particular, this holds when f ′(x) is continuous and we restrict ourselves to a closed
interval [a, b], in which case the Lipschitz constant is L = maxx∈[a,b] |f ′(x)|. In the next
lemma, we give a criterion for equicontinuity in terms of Lipschitz continuity.

Lemma 2.2. Let K ⊂ Rd be compact and A ⊂ C(K). If every function in A is Lipschitz
continuous with the same Lipschitz constant L, then A is equicontinuous.

Proof. Let ε > 0, and choose δ = ε/2L. Then for all x, y ∈ K with |x − y| < δ and for all
f ∈ A,

|f(x)− f(y)| ≤ L|x− y| ≤ Lδ =
ε

2
< ε.

�

The same result holds for Hölder continuous functions. Hölder continuity is a weaker
condition than Lipschitz continuity, and it shows up in the study of PDEs.

Definition 2.5. A function f : Rd → R is Hölder continuous with exponent α ∈ (0, 1]
(sometimes this is called α-Hölder continuous) if there exists a positive constant C > 0 such
that for all x, y ∈ X,

|f(x)− f(y)| ≤ L|x− y|α.

The case α = 1 is Lipschitz continuity. We exclude α > 1, because it can be shown
that any function on an interval [a, b] satisfying the Hölder condition with α > 1 is constant.
Hölder continuity also implies uniform continuity, and the result of the previous lemma holds
if every function in A is Hölder continuous with the same α and C. We mentioned above
that the mean value theorem implies that if f : [a, b] → R is continuously differentiable, f
is Lipschitz with Lipschitz constant maxx∈[a,b] |f ′(x)|. Unfortunately, this does not work in
higher dimensions, since there is no n−dimensional analogue to the mean value theorem.
We can obtain a similar result, however, if f is continuously differentiable on a compact,
convex set. We recall that since f ′ is continuous, it is bounded on all compact sets. First,
we define a convex set.

Definition 2.6. A set E in Rd is convex if for all x, y ∈ E, the line segment joining them
is also in E. In other words, for all x, y ∈ E,

tx+ (1− t)y ∈ E t ∈ [0, 1].

We then have the following lemma.

Lemma 2.3. Let K ⊂ Rd convex and compact, and K ⊂ U ⊂ Rd, where U is open. Let
f : U → R be continuously differentiable, and let supx∈K ‖Df(x)‖ = L. Then f : K → R is
Lipschitz with constant L.

Proof. Let x, y ∈ K. Since K is convex, tx+ (1− t)y ∈ K for all t ∈ [0, 1]. Next, we use the
fundamental theorem of calculus to write f(x)− f(y) in the following integrated form:

f(x)− f(y) =

∫ 1

0

d

dt
f (tx+ (1− t)y) dt

=

∫ 1

0

Df(tx+ (1− t)y) · (x− y)dt

=

(∫ 1

0

Df(tx+ (1− t)y)dt

)
· (x− y),
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where the second line follows from the multivariable chain rule, and the dot represents the
dot product in Rd. Taking absolute values, we have

|f(x)− f(y)| ≤
∣∣∣∣∫ 1

0

Df(tx+ (1− t)y)dt

∣∣∣∣ |x− y|
≤

∫ 1

0

‖Df(tx+ (1− t)y)‖︸ ︷︷ ︸
≤ L since tx+(1−t)y ∈K

dt

 |x− y|
≤ L|x− y|.

�

2.1. Application to Existence of Solutions to ODEs. In this section, we will use the
Arzela-Ascoli theorem to prove the existence of solution to first order ODEs. Before we get
too theoretical, let’s look at several examples of initial value problems on R.

(1) Exponential growth/decay:

du

dt
= ku

u(0) = u0

By separation of variables, this has a solution u(t) = u0e
kt, which exists for all time

t.
(2) “Superexponential” growth:

du

dt
= u2

u(0) = 1

By separation of variables, this has solution u(t) = 1
1−t . Since we start at t = 0,

u(t)→∞ as t→ 1 from below. In other words, the solution blows up to infinity in
finite time. (This is not good!)

(3) Non-uniqueness:

du

dt
= u1/3

u(0) = 0

We can see by inspection that u(t) = 0 is a solution. By separation of variable, we
can also find another solution:

u(t) =

(
2t

3

)3/2

t ≥ 0.

We actually have an infinite family of solutions, which can be written piecewise as

u(t) =

0 t ≤ T(
2(t−T )

3

)3/2

t > T,
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where T ≥ 0. In other words, we start at the zero solution, and at time T , we start
following the nonzero solution. (This piecewise function is continuously differentiable
but not smooth).

With these examples in hand, we can discuss existence of solutions to ODEs. From the
second example, we will in general only be able to show local existence, i.e. existence
in an interval around the starting point. The most basic result is due to Peano, where
only continuity is assumed. The proof uses a compactness argument featuring the Arzela-
Ascoli theorem. We note that while the procedure is relatively straightforward, some of the
estimates in the proof are quite cumbersome.

Theorem 2.3 (Cauchy-Peano Existence Theorem). Consider the initial value problem on
Rn

du

dt
= f(t, u)

u(t0) = u0.

If f is continuous in a neighborhood of (t0, u0), then there exists at least one solution u(t)
defined in a neighborhood of t0. There is no guarantee of uniqueness.

Proof. For simplicity, we will only consider functions f : R → R, although the proof is the
same for functions on Rn. For convenience and without loss of generality (since we can
always translate the function via a change of variables), we will take t0 = 0 and u0 = 0. The
strategy of the proof is:

(1) Rewrite the problem in integral form.
(2) Construct a sequence of approximate solutions {un(t)} using the forward Euler method,

where the mesh size h→ 0 as n→∞.
(3) Show this sequence {un(t)} is uniformly bounded and equicontinuous.
(4) By Arzela-Ascoli, {un(t)} must have a subsequence which converges to a function

u(t).
(5) Show that the limit u(t) is what we want, i.e. it solves the initial value problem.

We proceed as follows.

(1) Since f is continuous in a neighborhood of (0, 0), f is continuous on a box B =
[−R,R]× [−R,R], for some R > 0. Since f is continuous, f is bounded on B, thus
we can find a constant M ≥ 1 such that |f(t, u)| ≤M on B.

(2) Next, we rewrite the problem in integral form. This is necessary because we will use
piecewise linear functions as approximate solutions, and these are not differentiable
at the points where the pieces join together. We can show that u(t) satisfies the
original initial value problem if and only if u(t) satisfies the integral equation

u(t) = u0 +

∫ t

t0

f(s, u(s))ds.

(To see this, differentiate this expression with respect to t). Since we are taking
t0 = 0 and u0 = 0, this becomes

u(t) =

∫ t

0

f(s, u(s))ds.
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(3) Let T = R/M , and consider the sequence of forward Euler approximations un(t)
on [−T, T ], which are defined as follows. Rather than write formulas for the ap-
proximations un(t), which is annoying, we will give the procedure used to construct
them.
(a) Choose any n ∈ N, and let hn = T/n be the mesh size for the time grid, so that

the grid for t is given by

[−tnn,−tnn−1, . . . ,−tn1 , 0, tn1 , tn2 , . . . , tnn]

= [−nhn,−(n− 1)hn, . . . ,−hn, 0, hn, 2hn, . . . , nhn].

The time grid contains 2n+ 1 grid points, and nhn = T .
(b) We start with the initial condition un0 = 0, and then we compute un on the rest

of the grid using the forward Euler method:

un0 = 0

un1 = 0 + f(0, 0)hn

un2 = un1 + f(tn1 , u
n
1 )hn

...

unm+1 = unm + f(tnm, u
n
m)hn

...

and similarly for going backwards in t. (Is going backwards in t a form of time
travel?)

(c) Define un(t) to be the piecewise linear interpolation of these grid values, i.e.
“connect the dots” by joining the points (tnm, u

n
m) with line segments. Since

un(t) is piecewise linear, un(t) is differentiable on the open intervals (tnm, t
n
m+1),

with the derivative given by

u′n(t) = f(tnm, u
n
m).

It follows from the bound on f that |u′n(t)| ≤M (where this is defined).
(4) Next, we show that the sequence {un(t)} is uniformly bounded and equicontinuous.

For uniform boundedness, we note that, for each Euler step, we have the bound

|unm+1 − unm| ≤Mhn.

Since the function un(t) involves (at most) n Euler steps in each direction, and un(t)
is linear between these steps, we have the uniform bound

|un(t)| ≤ nMhn = MT.

For equicontinuity, since un(t) is differentiable everywhere except at a finite number
of grid points, we have for −T ≤ s, t ≤ T ,

|un(t)− un(s)| ≤
∫ t

s

|u′n(r)|dr ≤
∫ t

s

Mdr = M |t− s|,

where we evaluate the integral by splitting it up into pieces at the grid points. Since
the functions {un(t)} are Lipschitz continuous with the same Lipschitz constant M ,
the sequence {un(t)} is equicontinuous.
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(5) By the Arzela-Ascoli theorem, {un(t)} has a uniformly convergent subsequence, which
we will denote by {vk(t)} = {unk

(t)}, so that vk(t)→ u(t) uniformly.
(6) The only thing left is to show that u(t) is a solution to the integrated form of the

ODE. This is the really technical part. Using the triangle inequality∣∣∣∣u(t)−
∫ t

0

f(s, u(s))ds

∣∣∣∣
≤ |u(t)− vk(t)|+

∣∣∣∣∫ t

0

f(s, vk(s))ds−
∫ t

0

f(s, u(s))ds

∣∣∣∣+

∣∣∣∣vk(t)− ∫ t

0

f(s, vk(s))ds

∣∣∣∣ .
(7) The first term on the RHS → 0 by the uniform convergence of {un(t)} from the

Arzela-Ascoli theorem. For the second term on the RHS,∣∣∣∣∫ t

0

f(s, vk(s))ds−
∫ t

0

f(s, u(s))ds

∣∣∣∣ ≤ ∫ t

0

|f(s, vk(s))ds− f(s, u(s))|ds,

which also → 0 by the uniform convergence of vk(t), together with the uniform
continuity of f on the closed interval [−T, T ].

(8) All that remains is to show the third term on the RHS → 0. This is unfortunately
really annoying to do, since it quickly becomes a subscript nightmare. The idea is as
follows. Since we only care about the subsequence {vk(t)} = {unk

(t)}, we will always
have n = nk. For convenience, we will denote the grid points by tkj , where tkj = tnk

j .

Let t ∈ [0, T ]. Then t is always between two grid points, i.e. t ∈ [tkm, t
k
m+1] for some

m. (If t is actually one of the grid points, we will take t = tkm+1).
(9) Let vkj be the values of vk(t) on the grid tkj , i.e. vkj = vk(t

k
j ). Then we can write vk(t)

as the following telescoping sum involving grid points:

vk(t) =
m−1∑
j=0

(vkj+1 − vkj ) + (vk(t)− vkm),

where we recall that vk(0) = 0. Substituting this into the 3rd term on the RHS
of part (6), splitting the integral up at the grid points, and using the fundamental
theorem of calculus, this becomes

vk(t)−
∫ t

0

f(s, vk(s))ds

=
m−1∑
j=0

(vkj+1 − vkj )−
m−1∑
j=0

∫ tkj+1

tkj

f(s, vk(s))ds+ (vk(t)− vkm)−
∫ t

tkm

f(s, vk(s))ds

=
m−1∑
j=0

∫ tkj+1

tkj

v′k(s, vk(s))ds−
m−1∑
j=0

∫ tkj+1

tkj

f(s, vk(s))ds+

∫ t

tkm

v′k(s, vk(s))ds−
∫ t

tkm

f(s, vk(s))ds

=
m−1∑
j=0

∫ tkj+1

tkj

(f(tkj , v
k
j )− f(s, vk(s)))ds+

∫ t

tkm

f(tkm, v
k
m)− f(s, vk(s)))ds.
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Taking absolute values, we obtain∣∣∣∣vk(t)− ∫ t

0

f(s, vk(s))ds

∣∣∣∣
≤

m−1∑
j=0

∫ tkj+1

tkj

|f(tkj , v
k
j )− f(s, vk(s))|ds+

∫ t

tkm

|f(tkm, v
k
m)− f(s, vk(s))|ds

≤
m∑
j=0

∫ tkj+1

tkj

|f(tkj , v
k
j )− f(s, vk(s))|ds.

(10) All that remains is to estimate this nasty integral! To to this, we use the uniform
continuity of f on B. Let ε > 0. Then we can find δ > 0 such that if max(|s− t|, |u−
v|) < δ, |f(s, u)− f(t, v)| < ε. Since as n increases we are refining the grid, choose k
sufficiently large so that hnk

< δ/M . Then, for all s ∈ [tkm, t
k
m+1],

|s− tkm| ≤ |tkm+1 − tkm| < δ,

and

|vk(s)− vkm| ≤ |vkm+1 − vkm| ≤Mhnk
< δ,

since vk(s) is a piecewise interpolation between vkk and vkm+1. For all the integrands
involved in the sum, we have the bound

|f(tkj , v
k
j )− f(s, vk(s))| ≤ ε.

Putting all of this together, we have∣∣∣∣vk(t)− ∫ t

0

f(s, vk(s))ds

∣∣∣∣ ≤ m∑
j=0

∫ tkj+1

tkj

εds

≤ ε
m∑
j=0

(tjj+1 − tkj )ds ≤ ε
m∑
j=0

hnk
εds

≤ ε(m+ 1)hnk
≤ εnk

T

nk
= εT,

since m is at most nk − 1.

�

Since the solution we obtained is only guaranteed to exist on [−T, T ], we call u(t) a local
solution to the initial value problem. We can extend this result to uniqueness by adding
the condition that the function f is Lipschitz. In order to do this, we need a very useful
(but technical) result known as the Gronwall inequality. There are seemingly hundreds of
versions of the Gronwall inequality. (I think there is a whole book on them). Here is one
version.

Theorem 2.4 (Gronwall Inequality). Let u(t) and g(t) be non-negative, real-valued functions
defined on t ∈ [t0, t1]. Let C ≥ 0 be a constant so that

u(t) ≤ C +

∫ t

t0

g(s)u(s)ds t ∈ [t0, t1].
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Then

u(t) ≤ C exp

(∫ t

t0

g(s)ds

)
t ∈ [t0, t1].

It follows that if C = 0, u = 0 for t ∈ [t0, t1].

Proof. We first consider the case where C > 0. Let

v(t) = C +

∫ t

t0

g(s)u(s)ds.

Then u(t) ≤ v(t) on [t0, t1] (by assumption), and v(t) ≥ C > 0 on [t0, t1] (since g, u ≥ 0).
Differentiating v with respect to t, we obtain

v′(t) = g(t)u(t) ≤ g(t)v(t).

Since v(t) > 0 on [t0, t1], we can divide by v(t) to obtain

v′(t)

v(t)
≤ g(t) t ∈ [t0, t1].

Next, we integrate the function g to obtain∫ t

t0

g(s)ds ≥
∫ t

t0

v′(s)

v(s)
ds =

∫ t

t0

d

ds
(log v(s)) ds = log

v(t)

v(t0)
= log

v(t)

C
.

Finally, we exponentiate both sides and multiply by C to get

u(t) ≤ v(t) ≤ C exp

(∫ t

t0

g(s)ds

)
t ∈ [t0, t1],

which is the bound in the statement of the theorem. If C = 0, then for any ε > 0,

u(t) ≤ ε+

∫ t

t0

g(s)u(s)ds t ∈ [t0, t1]

By the first result (taking C = ε), we have for t ∈ [t0, t1]

u(t) ≤ ε exp

(∫ t

t0

g(s)ds

)
≤ ε exp

(∫ t1

t0

g(s)ds

)
≤Mε,

which is independent of t. (To get the second line, we use the fact that g(s) is nonnegative).
Since ε is arbitrary, we conclude that u = 0 on [t0, t1]. �

At first glance, this inequality appears to a useless result: why are we bounding a function
by something which is growing exponentially? Let’s take a closer look. We are taking a
function u(t) which is bounded by an exponential involving u itself and obtaining a bound
which involves an exponential independent of u. Essentially, this says that u(t) can grow
at most exponentially fast. We can use the Gronwall inequality to prove the uniqueness
of solutions to the initial value problem du

dt
= f(t, u) in the case where the function f is

Lipschitz continuous.

Theorem 2.5 (Local Uniqueness of Solutions). Consider the initial value problem on Rn

du

dt
= f(t, u)

u(t0) = u0
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Suppose that f is Lipschitz continuous in u in a neighborhood of (t0, u0), with Lipschitz
constant L which is independent of t. Then then there exists a unique solution u(t) defined
in a neighborhood of t0.

Proof. As in the proof of the Cauchy-Peano existence theorem, we can without loss of gen-
erality take t0 = 0. Local existence follows from the Cauchy-Peano existence theorem. For
uniqueness, suppose that two functions u1(t) and u2(t) are local solutions to the initial value
problem, both of which exist on a time interval [−T, T ]. If necessary, shrink T so that the
Lipschitz condition holds on all of [−T, T ]. We will show that u1(t) = u2(t) on [−T, T ]. Let
u(t) = u1(t)− u2(t). Since both u1 and u2 solve the integrated form of the problem,

|u(t)| =
∣∣∣∣(u0 +

∫ t

0

f(s, u1(s))ds

)
−
(
u0 +

∫ t

0

f(s, u2(s))ds

)∣∣∣∣
=

∫ t

0

|f(s, u1(s))− f(s, u2(s))|ds ≤
∫ t

0

L|u1(s)− u2(s)|ds

= 0 +

∫ t

0

Lu(s)ds

We have satisfied the conditions of the Gronwall inequality with g(t) = L and C = 0. It
follows that u(t) = 0 for t ∈ [0, T ], from which we conclude that u1(t) = u2(t) for t ∈ [0, T ].
We can similarly obtain the result for t ∈ [−T, 0]. �

We have successfully obtained conditions for local existence and local uniqueness for solu-
tions to initial value problems. We will return to this topic and obtain more uniform results
when we discuss contraction mappings.

3. Normed Vector Spaces and Banach Spaces

3.1. Definitions. A norm on a vector space is a function which measures the “length” of a
vector.

Definition 3.1. A norm on a vector space V is a function ‖ · ‖ : V → R with the following
properties:

(1) ‖x‖ ≥ 0
(2) ‖x‖ = 0 ⇐⇒ x = 0
(3) ‖λx‖ = |λ|‖x‖ for all scalars λ
(4) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

A vector space paired with a norm is a normed vector space.

Every normed vector space is a metric space, since a norm induces a metric, which is given
by

d(x, y) = ‖x− y‖.

The converse, however, is not true. There are vector spaces on which there is a metric,
but no norm can be found. Next, we define a bounded linear map between normed vector
spaces. This is different from the concept of a bounded function that we use in, say, the
Bolzano-Weierstrass theorem.
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Definition 3.2. Let X and Y be normed vector spaces, with norms ‖ · ‖X and ‖ · ‖Y ,
respectively. Let L : X → Y be a linear map. Then L is bounded if there exists a constant
C ≥ 0 such that for all u ∈ X,

‖Lu‖Y ≤ C‖u‖X .

In a normed vector space, boundedness and continuity of linear operators is equivalent,
which we show in the next proposition.

Proposition 3.1. Let X and Y be normed vector space, with norms ‖ · ‖X and ‖ · ‖Y ,
respectively. A linear operator L : X → Y is bounded if and only if L is continuous.

Proof. If L is bounded, then

‖Lu− Lv‖Y = ‖L(u− v)‖Y ≤ L‖u− v‖X ,
and so L is Lipschitz, thus continuous. For the other direction, assume L is continuous.
Taking ε = 1, since L is continuous at 0, we can find δ > 0 such that, for all u ∈ X with
‖u‖X ≤ δ, ‖Lu‖Y ≤ 1. Let x ∈ X with x 6= 0. Then∣∣∣∣∣∣∣∣ δ‖x‖x

∣∣∣∣∣∣∣∣
X

= δ

∣∣∣∣∣∣∣∣ x‖x‖
∣∣∣∣∣∣∣∣
X

= δ,

from which it follows that ∣∣∣∣∣∣∣∣L( δ

‖x‖
x

)∣∣∣∣∣∣∣∣
Y

≤ 1.

Using the properties of the norm and the linearity of L, we can rearrange this to get

‖Lx‖Y ≤
1

δ
‖x‖X ,

thus L is a bounded linear operator with bound C = 1/δ. �

Let L(X, Y ) be the space of bounded linear maps from X to Y . If X = Y , we usually
denote this L(X). We define the operator norm of L ∈ L as follows.

Definition 3.3. Let L : X → Y be a bounded linear operator. Then the operator norm
of L is defined as one of the following, all of which are equivalent.

(1)
‖L‖ = sup

u6=0, ‖u‖X≤1

‖Lu‖Y

(2)
‖L‖ = sup

‖u‖X=1

‖Lu‖Y

(3)
‖L‖ = inf{C ≥ 0 : ‖Lu‖Y ≤ C‖u‖X for all u ∈ X}

Definition 3.4. A Banach space is a complete normed vector space, where completeness
is with respect to the metric induced by the norm.

We can show that the space L(X, Y ) is a normed vector space using the operator norm.
In addition, as long as Y is a Banach space, L(X, Y ) is a Banach space.

Proposition 3.2. L(X, Y ) is a normed vector space with the operator norm. If Y is a
Banach space, then L(X, Y ) is also a Banach space.



30 ROSS PARKER

Proof. The proof is left as an exercise. To show L(X, Y ) is complete, recall the proof for the
completeness of C([a, b]). �

The next lemma is incredibly useful and gives a criterion for a specific linear operator on
a Banach space to be invertible with bounded inverse. I use this all the time in my research
(no joke!)

Lemma 3.1 (Neumann Series). Let X be a Banach space, and let S ∈ L(X) with ‖S‖ < 1.
Then I − S is invertible, and (I − S)−1 ∈ L(X), where I is the identity operator on X.

Proof. Define the Neumann series for S as

L =
∞∑
n=0

Sn = I + S + S2 + ...

which is the operator analogue of the ordinary geometric series. To show that this is well-
defined, we note that the sequence of partial sums of L is a Cauchy sequence, thus the sum
converges since X is complete. In addition, L is bounded, with

‖L‖ ≤
∞∑
n=0

‖S‖n ≤ 1

1− ‖S‖
.

Finally, since

(I − S)L = (I − S)
N∑
n=0

Sn︸ ︷︷ ︸
→ (I−S)L

=
N∑
n=0

(Sn − Sn+1) = I − SN+1︸ ︷︷ ︸
→ I

,

(I − S)L = I. Similarly, L(I − S) = I. �

3.2. Differentiation in Banach Spaces. We will now extend the concept of differentiation
to general Banach spaces. To do that, we will first look at the derivative of a functions on R
from a different perspective. From calculus, the derivative of a function f : R→ R at x = a
is defined as

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

provided the limit exists. We can rearrange this to get

lim
h→0

f(a+ h)− f(a)− f ′(a)h

h
= 0.

Note that f ′(a) is a real number, and as such is (trivally) a linear operator on R. The term
f ′(a)h can be thought of as applying this linear operator to h. The original definition of the
derivative makes no sense in higher dimensions (unless we are taking a directional derivative,
in which case h is still a real number). The second definition, however, is easily extended to
higher dimensions.

Definition 3.5. A function f : Rn → Rm is differentiable at a point a ∈ Rn if there exists
a linear transformation L : Rn → Rm such that

lim
h→0

|f(a+ h)− f(a)− Lh|
|h|

= 0.
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Although it can be annoying to use this definition, if all partial derivatives of f exist and
are continuous in a neighborhood of a, then f is differentiable, and the derivative is given
by the Jacobian matrix

DF (a) =


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fm
∂xm

. . . ∂f1
∂xn


x=a

.

There are analogues of the chain rule and the Taylor theorem in higher dimensions. Finally,
we extend this definition to arbitrary Banach spaces.

Definition 3.6. Let X and Y be Banach spaces, U ⊂ X open, and f : U → Y . Then f is
differentiable at u ∈ U if there exists a bounded linear transformation L ∈ L(X, Y ) such
that

lim
h→0

‖f(u+ h)− f(u)− Lh‖Y
‖h‖X

= 0.

The map L is sometimes called the Fréchet derivative. If f is differentiable at u0 ∈ U , we
use the notation Df(u0) or fu(u0) for the derivative.

We can show that that the Fréchet derivative, if it exists, is unique. In general, to show
that the Fréchet derivative exists, we choose a candidate for the derivative, and then use
the definition about to show that our candidate works. If f is differentiable for all u ∈ U ,
then the map Df : U → L(X, Y ) defined by u 7→ Df(u) is well-defined. A function f is
C1 if this map is continuous. Finally, we note that the chain rule remains valid in Banach
spaces (provided the appropriate derivatives exist), and that higher order derivatives can be
defined by considering the differentiability of Df : U → L(X, Y ), etc.

4. Fixed Point Theorems

This section covers fixed point theorems, which guarantee the existence of a unique fixed
point of a function, i.e. a unique x such that f(x) = x. Fixed point methods are a powerful
analytical tool, as we will soon discover. As motivation, we will look at Newton’s method,
which is used to find isolated zeros of a differentiable, real-valued function f(x). Newton’s
method works as follows.

(1) Start with an initial guess x0 (ideally near an actual zero of f) with f ′(x0) 6= 0.
(2) Iterate the algorithm

xn+1 = xn −
f(xn)

f ′(xn)
.

Geometrically, the new value of x is where the tangent line of f at (xn, f(xn)) hits
the x-axis.

(3) ????
(4) PROFIT

We would like this method to converge to a unique zero of f , which (we hope!) is the zero
near our initial guess. To do this, we define a “Newton function” g by

g(x) = x− f(x)

f ′(x)
.

If x is a fixed point of g, i.e. g(x) = x, then, as long as f ′(x) 6= 0, f(x) = 0, which is exactly
what we want. Our goal is to show that a fixed point of g exists, and that Newton’s Method
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converges to it. It turns out that the criterion we will need for this to work is that the map
g is a contraction.

Definition 4.1. Let D be a subset of a normed vector space (X, ‖ · ‖). Then F : D → D is
a contraction if there exists a constant L with 0 < L < 1 such that

‖F (x)− F (y)‖ ≤ L‖x− y‖

for all x, y ∈ D. In other words, F is Lipschitz continuous with Lipschitz constant L < 1.

We will now state the Banach Fixed Point Theorem, which is also called the Contraction
Mapping Principle. This theorem not only gives criteria for the existence of a unique fixed
point, but also tells that that we can find it using successive iteration, which is exactly what
we do in Newton’s method.

Theorem 4.1 (Banach Fixed Point Theorem). Let (X, ‖ ·‖) be a Banach space, and D ⊂ X
a closed, nonempty subset of X. Suppose that the map F : D → D is a contraction, i.e.
there exists a positive constant L < 1 such that for all u, v ∈ D,

‖F (u)− F (v)‖ ≤ L‖u− v‖.

Then F has a unique fixed point u∗ in D, i.e. there exists a unique u∗ ∈ D such that
F (u∗) = u∗.

Proof. As with many proofs involving complete metric spaces, the idea is to construct a
Cauchy sequence in D, which must then converge since X is complete. Since D is closed,
the limit must be in D. We construct the sequence by iterating the map F from any point
in D.

(1) Start with an arbitrary u0 ∈ D and iteratively apply F to obtain a sequence {un},
which is defined as follows. Let

u1 = F (u0)

u2 = F (u1) = F (F (u0)

...

so that un = F (un−1) for all n ≥ 1. Since F : D → D, un ∈ D for all n.
(2) Since F is a contraction,

‖F (u1)− F (u0)‖ ≤ L‖u1 − u0‖
‖F (u2)− F (u1)‖ ≤ L‖u2 − u1‖ = L‖F (u1)− F (u0)‖ ≤ L2‖u1 − u0‖

...

so that we have the bound

‖F (un)− F (un−1)‖ ≤ Ln‖u1 − u0‖.

Using the definition of F , this becomes

‖un+1 − un‖ ≤ Ln‖u1 − u0‖.
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(3) Show that {un} is a Cauchy sequence. For arbitrary n, k ≥ 1, using the triangle
inequality, we have

‖un+k − un‖ ≤
k−1∑
j=0

‖un+j+1 − un+j‖ ≤
k−1∑
j=0

Ln+j‖u1 − u0‖

= ‖u1 − u0‖Ln
k−1∑
j=0

Lj ≤ ‖u1 − u0‖Ln
∞∑
j=0

Lj

= ‖u1 − u0‖
Ln

1− L
→ 0 as n→∞,

where, in the third line, since 0 < L < 1, we used the sum of the infinite geometric
series.

(4) Show {un} converges to an element of D. Since {un} is a Cauchy sequence and X is
complete, un converges to some element u∗ in X. Since D is closed and {un} ⊂ D,
we must have u∗ ∈ D.

(5) Show u∗ is a fixed point of F . Since F is Lipschitz, it is continuous, thus by the
definition of un, and the continuity of F ,

F (u∗) = F
(

lim
n→∞

un

)
= lim

n→∞
F (un) = lim

n→∞
un+1 = u∗.

(6) Show u∗ is the unique fixed point of F in D. We follow the standard procedure,
which is to suppose there are two fixed points and look at their difference. If ũ∗ is
another fixed point, then

|u∗ − ũ∗| = |F (u∗)− F (ũ∗)| < L|u∗ − ũ∗|,

which is impossible since L < 1.

�

It is important to note that to use the Banach fixed point theorem, we require a closed
subspace D, and we have to verify two things:

(1) F : D → D.
(2) F is a contraction on D.

It turns out that the first criterion is often the harder one to verify. Once that is done, we
sometimes get the second one for free. Since we discussed Newton’s method above, let’s
revisit it using the Banach fixed point theorem. We prove the following lemma, which gives
us a criterion for when Newton’s method converges.

Lemma 4.1 (Convergence of Newton’s Method). Let f : [a, b]→ R be C2. Suppose for some
x ∈ [a, b] that f(x) = 0 and f ′(x) 6= 0. Then there exists an interval I = [x− δ, x+ δ] ⊂ [a, b]
such that Newton’s method converges to x starting at any x0 ∈ I.

Proof. Define the “Newton function”

g(x) = x− f(x)

f ′(x)
.

We will show that there is an interval containing x on which g is a contraction.
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(1) Since f ′′ is continuous on the closed interval [a, b], f ′′ is bounded on [a, b] by the
extreme value theorem, i.e. we can find a constant M > 0 such that |f ′′(x)| ≤M for
all x ∈ [a, b].

(2) For some δ > 0 (to be chosen later), let I = [x − δ, x + δ] ⊂ [a, b]. Then for
any y1, y2 ∈ I, since g is continuously differentiable, it follows from the mean value
theorem that

|g(y1)− g(y2)| ≤ sup
y∈I
|g′(y)| |y1 − y2|.

Note that we have not yet guaranteed that g′(y) does not blow up on I. Our goal is
to choose δ sufficiently small to control g′(y). Differentiating g(y), we obtain

g′(y) = 1− f ′(y)2 − f(y)f ′′(y)

f ′(y)2
=
f(y)f ′′(y)

f ′(y)2
.

(3) Now comes the technical part. Since f and f ′ are continuous, f(x) = 0, and f ′(x) 6= 0,
choose δ sufficiently small so that I ⊂ [a, b], and, for all y ∈ I,

(i) |f ′(y)| ≥ 1

2
|f ′(x)|.

(ii) |f(y)| ≤ |f
′(x)|2

8M
.

(4) For all y ∈ I, using the expression for g′(y) from step (2),

|g(y1)− g(y2)| ≤ |f(y)||f ′′(y)|
|f ′(y)|2

|y1 − y2| ≤
|f ′(x)|2

8M
M

4

|f ′(x)|2
≤ 1

2
|y1 − y2|.

(5) Since the Newton map g is a contraction on I, by the Banach Fixed Point Theorem it
has a unique fixed point x∗ in I. Since x is also a fixed point of g in I, by uniqueness
we have x∗ = x.

(6) Since Newton’s method uses the technique of successive approximations, which is
what was done in the proof of the Banach Fixed Point Theorem, Newton’s method
must converge to x.

�

Another consequence of the Banach fixed point theorem is the inverse function theorem.
For intuition, we will look at the one-dimensional case. Suppose f : R→ R is continuously
differentiable at x = a. We know from calculus that if f ′(a) 6= 0, f is invertible in a
neighborhood of a. This makes sense, since if f ′ is continuous, and f ′(a) 6= 0, f is either
strictly increasing or strictly decreasing in a neighborhood of a. We can then determine the
inverse from of the graph of f near a. Using the chain rule on f−1(f(x)) = x at x = a, if
b = f(a), then

(f−1)′(b) =
1

f ′(a)

The inverse function theorem extends this to higher dimensions. We will prove this later
as a corollary of the Implicit Function Theorem (this is much asier to do!), but we will state
the theorem here and outline how the proof uses the Banach fixed point theorem.

Theorem 4.2 (Inverse Function Theorem). Let F : Rn → Rn be continuously differentiable,
and suppose the derivative DF (x0) is invertible at x0. Then F is invertible in a neighborhood
of x0. Precisely,
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(1) There exist neighborhoods U of x0 and V of y0 = F (x0), such that the restriction
F |U : U → V is a bijection.

(2) The inverse function G : V → U is also continuously differentiable, and for y ∈ V ,

DG(y) = DF (G(y))−1.

Proof. For convenience, take x0 = 0. An outline of the proof is as follows.

(1) Since DF (0)−1DF (x) is continuous at x = 0 and DF (0)−1DF (0) = I, we can find
δ > 0 such that for all ‖x‖ ≤ δ,
(a) ‖I −DF (0)−1DF (x)‖ ≤ 1

2
.

(b) DF (x) is nonsingular.

Let B = Bδ(0) (closed ball of radius δ about 0).
(2) For a fixed y (which we take as a parameter), define the “Newton map”

N(x; y) = x−DF (0)−1(F (x)− y).

Note the resemblance of this map to that used in Newton’s method. Since DF (0)−1

is nonsingular, x is a fixed point of N(·; y) if and only if y = F (x).
(3) Verify the hypotheses of the Banach fixed point theorem:

(a) Show N(·; y) : B → B for all y in a neighborhood V of f(0).
(b) Show N(·; y) is contraction on B.

(4) For all y ∈ V , use the Banach fixed point theorem to find a unique x ∈ B such that
f(x) = y. Let f−1(y) be this unique x.

(5) Show f−1(y) is continuous and differentiable on V . This is annoying, but it can be
done. Once we have proved the Uniform Contraction Mapping Principle, this will be
much easier to do.

�

The next theorem we will prove is the Uniform Contraction Mapping Principle. The idea
here is that we have a family of contraction maps F (x;µ) indexed by a parameter µ. For each
value of the parameter µ, F (·;µ) has a unique fixed point by the Banach fixed point theorem.
Let G(µ) map each value of µ to that unique fixed point. The Uniform Contraction Mapping
Principle says that the map G is as smooth as the original map F . The proof incorporates
elements from Humpherys, Jarvis, and Evans, Foundations of Applied Mathematics, Volume
1: Mathematical Analysis (2017). We will first need one technical result involving operator
norm bounds on derivatives of Lipschitz functions.

Proposition 4.1. Let X and Y be Banach spaces, U an open subset of X, and F : U ⊂
X → Y differentiable. If F is Lipschitz with constant L, then, for all x ∈ U , the operator
norm of DF (x) has bound ‖DF (x)‖ ≤ L.

Proof. Let ε > 0 and x ∈ U . Since F is differentiable at x, by the definition of differentiability
in Banach spaces, we can find δ > 0 such that whenever ‖h‖X < δ,

‖F (x+ h)− F (x)−DF (x)h‖Y
‖h‖X

< ε.

We use the “supremum of unit vectors” definition of the operator norm (definiton 2 above).
Let u ∈ U be a unit vector, and let h = δ

2
u, so that ‖h‖X < δ. Then since u = h/‖h‖X , we
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have from the triangle inequality

‖DF (x)u‖ =
‖DF (x)h‖Y
‖h‖X

≤ ‖DF (x)h− (F (x+ h)− F (x))‖Y + ‖F (x+ h)− F (x)‖Y
‖h‖X

=
‖F (x+ h)− F (x)−DF (x)h‖Y

‖h‖X
+
‖F (x+ h)− F (x)‖Y

‖h‖X

≤ ε+
L‖x+ h− x‖X

‖h‖X
= ε+

L‖h‖X
‖h‖X

= ε+ L,

where in the fourth line we used the fact that F is Lipschitz. Since ε is arbitrary and this is
independent of u, we conclude that ‖DF (x)‖ ≤ L for all x ∈ U . �

We will now state and prove the Uniform Contraction Mapping Principle. For the next
two theorems, we will use the notation | · | for the norms on Banach spaces, and ‖ · ‖ for the
operator norm.

Theorem 4.3 (Uniform Contraction Mapping Principle). Let

(1) X be a Banach space.
(2) D ⊂ X a closed, nonempty subset of X.
(3) B an open subset of a Banach space Y (the “parameter space”).
(4) F : D ×B → D a map which is uniform contraction, i.e. there exists a constant

L < 1 such that, for all µ ∈ B and u, v ∈ D,

|F (u, µ)− F (v, µ)| ≤ L|u− v|.
Let G : B → D be the map which associates every µ ∈ B with the unique fixed point of
F (·;µ) from the Banach fixed point theorem. Then

(i) If F is uniformly Lipschitz in µ, i.e. there exists a constant M > 0 such that for
all u ∈ D and µ1, µ2 ∈ B,

|F (u, µ1)− F (u, µ2)| ≤M |µ1 − µ2|,
then G is Lipschitz continuous, with Lipschitz constant M/(1− L).

(ii) If F ∈ Ck(D × B,X) for k ≥ 0, then G ∈ Ck(B,X), i.e. G has the same smoothness
as F (k =∞ is allowed).

Proof. Define G(µ) as in the statement of the theorem. By the Banach fixed point theorem,
G : D → B is the unique function such that F (x;µ) = x if and only if x = G(µ). We proceed
in the following steps.

(1) Since we would like to show continuity of G, we first derive an expression (and
estimate) for |G(µ1) − G(µ2)|. Using the fact that G(µ) is a fixed point of F (·;µ)
and the triangle inequality,

|G(µ1)−G(µ2)| = |F (G(µ1);µ1)− F (G(µ2);µ2)|
≤ |F (G(µ1);µ1)− F (G(µ1);µ2)|+ |F (G(µ1);µ2)− F (G(µ2);µ2)|
≤ |F (G(µ1);µ1)− F (G(µ1);µ2)|+ L|G(µ1)−G(µ2)|.
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Since 0 < L < 1, subtract the last term on the RHS from both sides to obtain

(1− L)|G(µ1)−G(µ2)| ≤ |F (G(µ1);µ1)− F (G(µ1);µ2)|.
(2) Finally, divide by (1− L) to get

|G(µ1)−G(µ2)| ≤ 1

1− L
|F (G(µ1);µ1)− F (G(µ1);µ2)|.

If F is continuous in both variables (which is part (ii) with k = 0, then the RHS
above → 0 as µ2 → µ1, thus G is continuous.

(3) For part (i), if F is uniformly Lipschitz in µ, then the RHS in step (2) becomes

|G(µ1)−G(µ2)| ≤ M

1− L
|µ1 − µ2|.

(4) All that remains is consider part (ii) with k > 0. We first consider the case k = 1,
i.e. F is continuously differentiable. The way we will do this is to devise a candidate
for DG(µ) and then use the definition of the derivative to show that this candidate
is indeed the derivative.

(5) Recall that G(µ) = F (G(µ), µ). If G were differentiable, then, by the chain rule and
differentiability of F , we would have

DG(µ) = DF (G(µ), µ) = DXF (G(µ), µ)DG(µ) +DBF (G(µ), µ).

This means that DG(µ) would be a fixed point of the mapping Φ : L(B,X)× B →
L(B,X), defined by

Φ(A;µ) = DXF (G(µ), µ)A+DBF (G(µ), µ).

The map Φ is a uniform contraction, since for A1, A2 ∈ L(B,X),

|Φ(A1;µ)− Φ(A2;µ)|
= |DXF (G(µ), µ)A1 +DBF (G(µ), µ)− (DXF (G(µ), µ)A2 +DBF (G(µ), µ))|
= |DXF (G(µ), µ)(A1 − A2)| ≤ ‖DXF (G(µ), µ)‖ |A1 − A2|
≤ L|A1 − A2|,

where the last line follows from the previous proposition and the fact that F (·;µ) is
Lipschitz with constant L.

(6) Since L < 1, by the Banach fixed point theorem, there exists a function Z : B →
L(B,X) which maps each µ ∈ B to the unique fixed point Z(µ) of Φ(·;µ). Since F
is C1, Φ is continuous, thus by the k = 0 case of part (ii) of the Uniform Contraction
Mapping Principle (which we have already proved!), the map Z(µ) is continuous.

(7) The function Z(µ) is our candidate for DG(µ). All that remains is to use the def-
inition of the derivative to show that Z(µ) is actually the derivative. This is very
technical and time-consuming, so we will omit it. If you are interested in how this
is done, you can look the proof of Lemma 7.2.9 on pages 284-285 of Humpherys,
Jarvis, and Evans (2017). We then repeat this argument for k > 1 for higher order
derivatives.

�

We will use the uniform contraction mapping principle to prove the implicit function
theorem, which is one of the most important tools in analysis and dynamical systems. We
will start with a motivating example.
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Consider the unit circle, x2 + y2 = 1. This is not a function (of y in terms of x), since,
other than the right endpoint (1, 0) and left endpoint (−1, 0), there are two values of y for
every x. That being said, at any point other than these endpoints, we can solve locally for
y as a function of x. To do this, draw a small box around that point, ignore everything
outside of the box, and what is left depicts y as a function of x. In this case, we can obtain
an explicit formula for the function in the box. (We will usually not be able to do this!)
Near any point on the upper semicircle, for example, we can write y =

√
1− x2. Why does

this fail at the left and right endpoints? Let’s rewrite the unit circle as the zero level set of
the function f(x, y) = x2 + y2 − 1. At (1, 0), we have ∂f

∂y
= 0 and ∂f

∂y
= 0. This means that,

near (1, 0), the zero set of f resembles a vertical line. At (1, 0), the zero set has a vertical
tangent. Essentially, we cannot solve for y as as function of x at (1, 0) because ∂f

∂y
= 0.

We will now state and prove the implicit function theorem. The proof uses the Uniform
Contraction Mapping Principle.

Theorem 4.4 (Implicit Function Theorem). Let

(1) X, Y , and Z be Banach spaces.
(2) U ⊂ X, V ⊂ Y be open sets.
(3) F : U × V → Z be a Ck map, with k ≥ 1.
(4) (x0, y0) ∈ U × V with F (x0, y0) = 0.
(5) The partial derivative DXF (x0, y0) : X → Z be invertible, with bounded inverse.

Then we can solve for x as a function of y near (x0, y0). That is, there is a neighborhood
U0 × V0 ⊂ U × V of (x0, y0) and a unique Ck function f : V0 → U0 with f(y0) = x0, such
that F (x, y) = 0 for (x, y) ∈ U0 × V0 if and only if x = f(y). Furthermore, the derivative of
f satisfies

Df(y) = −DXF (f(y), y)−1DY F (f(y), y).

Proof. We proceed in the following steps.

(1) First, we define a “Newton map”. Since DXF (x0, y0) is invertible, define the map
G : U × V → X by

G(x, y) = x− [DXF (x0, y0)]−1F (x, y).

This looks a lot like the map use use for Newton’s method, except the derivative is
always evaluated at (x0, y0). For fixed y ∈ V , G(x, y) = x if and only if F (x, y) = 0.
Since F is Ck, G is Ck as well, and

DXG(x, y) = I − [DXF (x0, y0)]−1 DXF (x, y).

In particular, DXG(x0, y0) = 0. Our goal is to show that G is a uniform contraction
on a neighborhood of (x0, y0). In the next two steps, we derive some bounds on DXG
and F . We will use these bounds in step (4).

(2) First, we control DXG(x, y) near (x0, y0). Since DXG(x, y) is continuous in (x, y),
and DXG(x0, y0) = 0, we can find open balls U0 = Bδ(x0) and V0 = Bε(y0) such that
for (x, y) ∈ U0 × V0,

‖DXG(x, y)‖ < 1

2
.

Since

[DXF (x0, y0)]−1DXF (x, y) = I −DXG(x, y),
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and ‖DXG(x, y)‖ < 1
2

on U0×V0, it follows from the Neumann series that DXF (x, y)

is invertible for (x, y) ∈ U0 × V0.
(3) Next, we control F (x0, y) near (x0, y0). For convenience, let L = [DX(x0, y0)]−1.

Since the map y 7→ F (x0, y) is continuous in y, and F (x0, y0) = 0, we can (if needed)
decrease ε (i.e. shrink the ball V0 = Bε(y0)) so that, for y ∈ V0,

|F (x0, y)| ≤ δ

2‖L‖
.

(4) Next, we show that G : U0 × V0 → U0. To do this we will use the following result: if
f : X → Y is a continuously differentiable map between Banach spaces, U ⊂ X is
convex, and supu∈U ‖Df(u)‖ ≤ M , then f is Lipschitz on U with constant M . We
proved this result for subsets of Rn; the proof for the more general case is identical.
Using this result and the triangle inequality, for x ∈ U0 and y ∈ V0, we have

|G(x, y)− x0| ≤ |G(x, y)−G(x0, y)|+ |G(x0, y)− x0|
≤ sup

x∈U0

‖DXG(x, y)‖ |x− x0|+ |x0 − LF (x0, y)− x0|

<
1

2
|x− x0|+ |LF (x0, y)| ≤ δ

2
+ ‖L‖ δ

2‖L‖
≤ δ.

Thus we conclude that |G(x, y)− x0| < δ for all x ∈ U0 and y ∈ V0.
(5) Finally, we show that G is a uniform contraction. For x1, x2 ∈ U0 and any y ∈ V0,

|G(x1, y)−G(x2, y)| ≤ sup
x∈U0

‖DXG(x, y)‖ |x1 − x2| ≤
1

2
|x1 − x2|.

(6) By the Uniform Contraction Mapping Principle, there is a unique Ck function f :
V0 → U0 which maps y ∈ V0 to the unique fixed point x of G(·, y). In other words,
G(f(y), y) = f(y) for all y ∈ V0. For all y ∈ V0, since f(y) ∈ U0, using the result
from step (5),

|f(y)− x0| = |G(f(y), y)− x0| < δ

Thus f(y) ∈ U0 (not just f(y) ∈ U0), and so we can restrict the codomain of f to
U0, i.e. we can define f : V0 → U0.

(7) Since F (x, y) = 0 if and only if x is a fixed point of G(·, y), this implies that
(a) f(y0) = x0.
(b) For (x, y) ∈ U0 × V0, F (x, y) = 0 if and only if x = f(y).

which is the result we want!
(8) To compute the derivative of f , use the chain rule on F (f(y), y) = 0 to get

0 = DXF (f(y), y)Df(y) +DY F (f(y), y).

Since DXF (x, y) is invertible on U0 × V0, we can rearrange this to get

Df(x) = −DXF (f(y), y)−1DY F (f(y), y).

�

The inverse function theorem is a corollary of the implicit function theorem.

Theorem 4.5 (Inverse Function Theorem). Let
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(1) X and Y be Banach spaces.
(2) U ⊂ X, V ⊂ Y be open sets.
(3) G : U → V a Ck map with G(x0) = y0.
(4) The derivative DF (x0) be invertible with bounded inverse.

Then we can invert G near y0. That is, there exist neighborhoods U0 ⊂ U of x0 and V0 ⊂ V
of y0 and a unique Ck function G−1 : V0 → U0 such that G(G−1(y)) = y for all y ∈ V0 and
G−1(G(x)) = x for all x ∈ U0. Furthermore, the derivative of G−1 is given by

DG−1(y) = DG(G−1(y))−1.

Proof. Take F (x, y) = G(x)− y, and use the implicit function theorem. �

As a final application of the uniform contraction mapping principle, we will revisit existence
and uniqueness of solutions to ODEs. We will only consider the case where the ODE is
written as u̇ = f(u), with f independent of t.

Theorem 4.6 (Picard-Lindelöf Existence and Uniqueness Theorem). Consider the initial
value problem (IVP) on Rn

du

dt
= f(u)

u(0) = u0.

Suppose that f is locally Lipschitz, i.e. for every ũ ∈ Rn there exists a radius δ and a
Lipschitz constant L (both depending on ũ) such that for all u1, u2 ∈ B(ũ, δ),

|f(u1)− f(u2)| ≤ L|u1 − u2|.
Then, for every ũ ∈ Rn there exists a radius δ and a time interval [−r, r] such that:

(i) For each initial condition u0 ∈ Bδ(ũ), the initial value problem has a unique solution
u(t;u0) on [−r, r].

(ii) The map u0 7→ u(·;u0) is Lipschitz in u0.
(iii) If f is Ck for k ≥ 1, then

(a) The solution u(t;u0) is Ck+1 in t.
(b) The map u0 7→ u(·;u0) is Ck in u0.

Proof. The steps of the proof are as follows: write the IVP in integrated form, use the inte-
grated form to construct a linear operator between Banach spaces, show that this operator
is a uniform contraction, and then apply the Uniform Contraction Mapping Principle.

(1) First, we reformulate the problem as an integral equation. By the fundamental
theorem of calculus, if u is differentiable, then

u(t) = u(0) +

∫ t

0

u′(τ)dτ.

Thus u(t) is a solution to the IVP if an only if it is a solution to the integral equation

(1) u(t) = u(0) +

∫ t

0

f(u(τ))dτ.

(2) Next, we define some constants. Choose any ũ ∈ Rn. Since f is locally Lipschitz, we
can find a radius δ > 0 and a Lipschitz constant L > 0 such that, for u1, u2 ∈ B2δ(ũ),

|f(u1)− f(u2)| ≤ L|u1 − u2|,
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Since f is continuous, it is bounded in the closure of this ball, so we define

C = sup{f(u) : u ∈ B2δ(ũ)}.

Finally, for convenience, let

B = Bδ(ũ)

be the set of initial conditions we will consider.
(3) We now define our Banach spaces. Consider the closed interval [−r, r], where r > 0

is small and will be chosen later. We will show that we have a unique solution to the
IVP for t ∈ [−r, r]. Let

X = C0([−r, r],Rn),

which is a Banach space equipped with the supremum (maximum) norm. Let k ∈ X
be the constant function ũ, i.e.

k(t) = ũ for all t ∈ [−r, r].

Finally, let D be the closed ball in X of radius 2δ about the constant function k, i.e.

D = B2δ(k(t)) = {u ∈ X : sup
t∈[−r,r]

|u(t)− ũ| ≤ 2δ}.

(4) Next, we define our mapping between Banach spaces. Define F : D ×B → X by

[F (u, u0)](t) = u0 +

∫ t

0

f(u(τ))dτ,

which is the RHS of the integrated form of the initial value problem. As we noted
above, a fixed point of F is a solution to the the IVP. Since f is continuous (at
minimum), the RHS of F is in X.

(5) Show that for sufficiently small r, F : D × B → D, i.e. the RHS of F from step (4)
is actually in D. For u ∈ D and u0 ∈ B,

sup
|t|≤r
|F (u, u0)− ũ| = sup

|t|≤r

∣∣∣∣u0 +

∫ t

0

f(u(τ))dτ − ũ
∣∣∣∣

≤ |u0 − ũ|+
∫ r

0

|f(u(τ))|dτ.

Since we are taking u ∈ D, u(τ) ∈ B2δ(ũ) for all τ ∈ [−r, r], and so |f(u(τ)| ≤ C for
all τ ∈ [−r, r]. Thus we have

sup
|t|≤r
|F (u, u0)− ũ| < δ + Cr.

If we take r ≤ δ/C, we have sup|t|≤r |F (u, u0)− ũ| < 2δ, which is what we want.
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(6) Show that for sufficiently small r, F is a contraction. For u, v ∈ D and u0 ∈ B,

sup
|t|≤r
|F (u, u0)− F (v, u0)|

= sup
|t|≤r

∣∣∣∣u0 +

∫ t

0

f(u(τ))dτ −
(
u0 +

∫ t

0

f(v(τ))dτ

)∣∣∣∣
≤ sup
|t|≤r

∫ t

0

|f(u(τ))− f(v(τ))|dτ ≤ Lr sup
|t|≤r
|u(t)− v(t)|

≤ Lr|u− v|.

If we take r ≤ 1/2L, then F is a contraction. Thus we choose r = min{δ/C, 1/L},
and we are all set!

(7) Show that the map F is uniformly Lipschitz in the initial condition u0. For u0, u1 ∈ B,

|F (u, u0)− F (u, u1)| = |u0 − u1| ≤ |u0 − u1|,

thus F is uniformly Lipschitz in u0 with Lipschitz constant 1.
(8) Finally, we show that F is Ck (in both variables) whenever f is Ck. Since F is linear

in u0, F is smooth in u0, thus it remains to show that F (·, u0) is Ck. First, we will
show that F (·, u0) is C1 if f is C1. Let u(t) ∈ D. We make an educated guess that
the Fréchet (partial) derivative with respect to u at u(t) is given by L, where L is
defined by

Lh(t) =

∫ t

0

Df(u(τ))h(τ)dτ.

Where did we get this from? One way to see it is by expanding F (u(t) + h(t), u0) in
a Taylor series and taking the term which is linear in h(t).

By the properties of integration, L is a linear operator, and it is bounded since f
is C1. Using the definition of the Fréchet derivative,

‖F (u+ h)− F (u)− L(h)‖
‖h‖

≤ 1

‖h‖
sup
|t|≤r

∣∣∣∣∫ t

0

[f(u(τ) + h(τ))− f(u(τ))]dτ −
∫ t

0

Df(u(τ))h(τ)dτ

∣∣∣∣
=

1

‖h‖
sup
|t|≤r

∣∣∣∣∫ t

0

[f(u(τ) + h(τ))− f(u(τ))−Df(u(τ))h(τ)]dτ

∣∣∣∣
≤
∫ r

0

|f(u(τ) + h(τ))− f(u(τ))−Df(u(τ))h(τ)|
|h(τ)|

dτ.

As ‖h‖ → 0, |h(τ)| → 0, thus the RHS of this goes to 0 since f is continuously
differentiable, and we are on a closed interval [0, r]. We can repeat this to conclude
that F is Ck.

(9) We have now satisfied the hypotheses of the Uniform Contraction Mapping Principle.
Thus there exists a Ck map G : B → D which maps each initial condition u0 to the
unique fixed point of F (·;u0), which is the unique solution u(t;u0) on [−r, r] to the
IVP. Note that this is a local existence result, but the interval of existence [−r, r] is
the same for all initial conditions u0 ∈ B.
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(10) Finally, the solution u(t;u0) is Ck+1 whenever f is Ck. Since we now know that u(t)
is a solution to the IVP, this follows from repeatedly differentiating d

dt
u(t) = f(u(t)).

�

Finally, we look at what happens when a solution to an IVP approaches the boundary
of the region where the solution exists. The following theorem shows that such a solution
blows up at the boundary.

Theorem 4.7 (Blowup at Boundary). Suppose f : Rn → Rn is C1, and u(t) satisfies the
initial value problem

du

dt
= f(u)

u(0) = u0

on an interval [0, T ), but there is no solution to the IVP on the interval [0, T + ε) for any
ε > 0. Then u blows up as it approaches the boundary, i.e. |u(t)| → ∞ as t→ T .

Proof. We employ a proof by contradiction. The main idea is that if we assume u(t) remains
bounded, we can construct a solution to the IVP which exists on a larger time interval, i.e.
at time t > T .

(1) Suppose this is not true. Then there is some sequence of times {tn} with tn ↑ T such
that {u(tn)} remains bounded, i.e. there exists a constant K such that |u(tn)| ≤ K
for all n.

(2) Since {u(tn)} is a bounded sequence in Rn, by the Bolzano-Weierstrass theorem, it
has convergent subsequence. Passing to this subsequence if needed, we may assume
that u(tn)→ ũ.

(3) Now consider the same initial value problem, but this time we take the initial con-
dition ũ0 to be close to the limit point ũ. By the existence and uniqueness theorem,
there is a radius δ and an interval [−r, r] such that for all initial conditions ũ0 ∈ Bδ(ũ),
there is a unique solution u(t) for t ∈ [−r, r] with u(0) = ũ0.

(4) Since f does not depend on t, we can translate these unique solutions in time, i.e
shift them to different starting times. In other words, for each ũ0 ∈ Bδ(ũ), there is a
family of unique solutions u(t; τ) on the interval [τ − r, τ + r] with u(τ ; τ) = ũ0. The
solutions in this family are just translates of each other (in time).

(5) Since tn ↑ T and u(tn)→ ũ, choose an integer m sufficiently large so that tm > T−r/2
and u(tm) ∈ Bδ(ũ). Consider the initial value problem

dv

dt
= f(v)

v(t∗) = u∗,

, where t∗ = tm and u∗ = u(tm). By what we showed in step (4), this IVP has a
unique solution v(t) for t = [t∗ − r, t∗ + r].

(6) By uniqueness (since f is locally Lipschitz), we can splice these solutions together,
since we can stop u(t) at (t∗, u∗), and v(t) starts at (t∗, u∗). Thus we have the
following solution to the original IVP:

w(t) =

{
u(t) T ∈ [0, t∗]

v(t) T ∈ [t∗, t∗ + r].
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Since t∗ + r > T , this solution exists on a larger interval than [0, T ), thus we have
a contradiction. This implies that our original assumption must be false, i.e. the
solution u(t) must blow up as it hits the boundary.

�

The existence result from the Picard-Lindelöf theorem (or the Cauchy-Peano theorem) is
only a local existence result. If we have a linear system, however, we can obtain a global
existence result.

Theorem 4.8 (Global Existence for Linear Systems). Consider the system

du

dt
= A(t)u

u(0) = u0,

where u ∈ Rn and A : R → Rn×n is continuous. Then there exists a unique solution u(t)
which exists for all t ∈ R.

Proof. We proceed as follows:

(1) Write the ODE as u̇ = f(u, t) with f(u, t) = A(t)u. Since f(u, t) is Lipschitz in u on
every bounded interval [−T, T ], the initial value problem has a unique solution u(t)
for t in an interval containing 0.

(2) We wish to show that u(t) exists for all t ∈ R. Suppose this solution exists on [0, t0),
but does not exist for any larger interval [0, t0 + ε). Then u(t) must blow up as it
approaches t0. We will show this cannot happen.

(3) Write the ODE in integrated form as

u(t) = u0 +

∫ t

0

A(τ)u(τ)dτ t ∈ [0, t0)

Taking absolute values and using the operator norm (matrix norm) of A(t), this
becomes

|u(t)| = |u0|+
∫ t

0

‖A(τ)‖ |u(τ)|dτ t ∈ [0, t0)

(4) This satisfies the hypotheses of Gronwall’s Inequality. Thus, for t ∈ [0, t0)

|u(t)| ≤ |u0| exp

(∫ t

s

‖A(τ)‖dτ
)
≤ |u0| exp

(∫ t0

s

‖A(τ)‖dτ
)
≤ C|u0|,

where the bound holds uniformly for t ∈ [0, t0) since it does not depend on t.
(5) We conclude that u(t) cannot blow up as t→ t0, thus it follows that u(t) must exist

for all t ≥ 0. A similar argument shows that u(t) must exist for all t ≤ 0.

�

5. Integration

5.1. Riemann Integral. We start with a review of the Riemann integral. In particular, we
will discuss its strengths and weaknesses. Let f : [a, b] → R be a bounded function. (It is
important that the domain is a closed, bounded interval, and that the function is bounded).
The Riemann integral is defined as follows.
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(1) First, partition the domain [a, b]. Let P be the partition

P : a = x0 < x1 < · · · < xn−1 < xn = b,

where n is arbitrary.
(2) Define the upper and lower sums on P by

UP (f) =
n−1∑
j=0

(xj+1 − xj) sup
x∈[xj ,xj+1]

f(x)

LP (f) =
n−1∑
j=0

(xj+1 − xj) inf
x∈[xj ,xj+1]

f(x).

The supremum and infimum are both well-defined since f is bounded.
(3) The function f is Riemann integrable on [a, b] if

inf
P
UP (f) = sup

P
LP (f).

If this holds, we denote the Riemann integral by
∫ b
a
f(x)dx.

(4) A convenient integrability criterion is the following: f is Riemann integrable on [a, b]
if, for every ε > 0, we can find a partition P such that

UP (f)− LP (f) < ε.

Technically, what we just defined is known as the Riemann-Darboux integral, which is equiv-
alent to the Riemann integral, and is often more convenient for analysis. The standard
Riemann integral involves the Riemann sums you learned in calculus. We can define that as
follows.

(1) Choose a tagged partition (P, t) of [a, b]. This is a partition P , given by

P : a = x0 < x1 < · · · < xn−1 < xn = b,

together with n points {t0, t1, . . . , tn−1}, with one selected from each subinterval of the
partition, i.e. tj ∈ [xj, xj+1]. Common choices for the tags ti are the left endpoints,
the right endpoint, and the midpoints of the partition intervals, although the choice
of tags does not matter from a theoretical standpoint. The mesh size of the partition
is the maximum length of the partition subintervals, i.e.

∆P = max
j=0,...,n−1

(xj+1 − xj).

Typically, each partition subinterval is chosen to be the same size, although this need
not be the case.

(2) The Riemann sum corresponding to (P, t) is

RP,t(f) =
n−1∑
j=0

(xj+1 − xj)f(tj).

(3) The function f is Riemann integrable with integral S if, for all ε > 0, there exists
δ > 0 such that

|RP,t(f)− S| < ε

for all tagged partitions (P, t) with mesh size ∆P < δ.

The main advantages of the Riemann integral are as follows:
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• You can compute them exactly with the fundamental theorem of calculus (as long as
you can find an antiderivative!)
• The definition is intuitive, and captures the idea of finding the area under a curve by

successive approximation.
• The approximating Riemanns sums are easy to compute numerically.
• Many useful classes of functions are Riemann integrable:

(1) Continuous functions on [a, b].
(2) Bounded functions on [a, b] which are continuous except at a finite number of

points.
(3) Bounded, monotonic functions on [a, b].

There are, however, several disadvantages to the Riemann integral.

• It is difficult to extend to domains that are not open subsets of Rn.
• It is difficult to extend to unbounded domains, such as all of R. As in calculus class,

you can define an “improper integral” as the limit of integrals on bounded intervals,
although the best way to do this is not always clear.
• It can be difficult to figure out which functions are and are not Riemann integrable.

Consider the following two examples.
(1) Since the rational numbers are countable, enumerate the set of rational numbers

in [0, 1] as the sequence {rk}, i.e.

Q ∩ [0, 1] = {rk}k∈N.

Then define the function

f(x) =
∞∑
k=1

1

k2
H(x− rk),

where H is the Heaviside step function

H =

{
0 x < 0

1 x ≥ 0.

The function f(x) is well-defined, since the sum
∑∞

k=1
1
k2

is convergent. How can
we picture this function? Imagine you are taking a walk from x = 0 to x = 1 on
the number line, and you are keeping a “running total” as you do this. (Maybe
this should be called a “walking total”?) The total starts at 0 at x = 0, and
every time you pass a rational number rk, you add 1/k2 to the total. Although
f(x) is discontinuous at every rational number, f(x) is Riemann integrable on
[0, 1], since it is bounded and monotonic (increasing).

(2) Let χQ(x) be the characteristic function of the set of rational numbers on [0, 1],
defined by

χQ(x) =

{
1 x ∈ Q
0 x /∈ Q.

The function χQ(x) is also bounded and discontinuous at every rational number.
However, since every partition interval contains both rational and irrational
numbers (both of these sets are dense in [0, 1]), χQ(x) is not Riemann integrable
on [0, 1].
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• The limit of a sequence of Riemann integrable functions is not necessarily Riemann
integrable. Once again, let Q∩ [0, 1] = {rk}k∈N, and define the sequence of functions
fn : [0, 1]→ R by

fn(x) =

{
1 x ∈ r1, . . . , rn
0 otherwise.

Since fn has only a finite number of discontinuities, fn is Riemann integrable with∫ 1

0

fn(x)dx = 0.

For every x ∈ [0, 1], fn(x)→ χQ(x), but χQ(x) is not Riemann integrable on [0, 1].

A final disadvantage (and perhaps the most important one), is that it is hard to find good
criteria that allow us to exchange limits and integration. We would like to find conditions
for which

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

lim
n→∞

fn(x)dx,

i.e. the limit of the integrals is the integral of the limit. The best we can do, in general, is
if we have a uniformly convergent sequence of functions on a bounded interval.

Theorem 5.1. For all n ∈ N, let fn : [a, b] → R be a Riemann integrable functions,
and suppose the sequence of functions {fn} converges uniformly to f . Then f is Riemann
integrable, and

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx.

Proof. Let εn = supx∈[a,b] |fn(x) − f(x)|, so that fn(x) − εn ≤ f(x) ≤ fn(x) + εn on [a, b].
Since {fn} converges to f uniformly, εn → 0. Then we have∫ b

a

fn(x)dx− (b− a)εn =

∫ b

a

(fn(x)− εn)dx = sup
P
LP (fn(x)− εn)

= sup
P

n−1∑
j=0

(xj+1 − xj) inf
x∈[xj ,xj+1]

(f(x)− εn)

≤ sup
P

n−1∑
j=0

(xj+1 − xj) inf
x∈[xj ,xj+1]

f(x)

= sup
P
LP (f),

where P is an arbitrary partition of [a, b]. Similarly,

inf
P
Up(f) ≤

∫ b

a

fn(x)dx− (b− a)εn.

Putting these together∫ b

a

fn(x)dx− (b− a)εn ≤ sup
P
Lp(f) ≤ inf

P
Up(f) ≤

∫ b

a

fn(x)dx− (b− a)εn.

This rearranges to
0 ≤ inf

P
UP (f)− sup

P
LP (f) ≤ 2(b− a)εn → 0,
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from which it follows that f is Riemann integrable on [a, b]. �

The main issue is that uniform convergence is, in a sense, too strong condition. As an
example, consider the sequence of functions fn(x) = xn on [0, 1]. For the limit, fn(x)→ f(x),
where

f(x) =

{
0 x ∈ [0, 1)

1 x = 1,

but this convergence is not uniform. (Either we can show that directly, or use the fact that if
the convergence were uniform, the limit would be continuous by the uniform limit theorem,
which it is not in this case). However, we still have

lim
n→∞

∫ 1

0

fn(x)dx = lim
n→∞

1

1 + n
= 0 =

∫ 1

0

f(x)dx.

Even though the convergence is not uniform, the limit of the integrals is equal to the integral
of the limit. Something else must be going on, and we would like to have a theory which
explains this case.

5.2. Lebesgue Integral. The Lebesgue integral is a complete different way of defining the
integral. For this discussion (and for comparison purposes), we will only consider nonnega-
tive, bounded, real-valued functions defined on a closed interval [a, b], although we will see
that the theory is more general than this. The secret sauce here is that instead of partitioning
the domain, we will partition the range.

Assume f : [a, b] → R is bounded and nonnegative, and let M = supx∈[a,b] f(x). For
now, we define the Lebesgue integral as follows. (Note that this is an intuitive construction;
ultimately this is not the definition we will use).

(1) Let P be a partition the range of f , i.e.

P : 0 = y0 < y1 < y2 < · · · < yn−1 < yn = M

(2) For j = 0, dots, n− 1, define the set Ij by

Ij = f−1([yj+1,∞)) = {x : f(x) ≥ yj+1}.
This set is all values of x for which f(x) ≥ yj+1.

(3) Define the sum

IP (f) =
n∑
j=0

(yj+1 − yj)m(Ij)

where m(Ij) is the “measure” of the set Ij. We have not defined this yet (this is what
measure theory is all about!), but think of it as the “length” of Ij. We can think of
this as constructing layers of a cake. The first layer has height y1−y0. Since we want
this layer to include all values of x corresponding to values of f(x) which are y1 or
more, the total “length” of this layer is m(I0); we note that this layer may consist
of many disconnected pieces. The subsequent layers are similarly constructed, and
each layer stacks neatly on top of the previous one.

(4) Then we define the Lebesgue integral as∫ b

a

f(x)dx = sup
P
IP (f),

if the supremum exists.
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The Lebesgue integral resolves most of the weaknesses of Riemann integral. The main
drawback is that, in most cases you cannot actually compute an integral using the Lebesgue
formulation, and you have to fall back on the fundamental theorem of calculus from Riemann
integration theory. Luckily, if a function is Riemann integrable, it is also Lebesgue integrable,
and the two integrals are the same! In fact, we can use Lebesgue integration theory to tell
us what are the “worst” functions which are still Riemann integrable. In order to use the
Lebesgue integral, we need to understand the “measure” term m(Ij) in the definition of
Ip(f). The field of measure theory is devoted to exactly this.

6. Measure Theory

What is measure theory, and why should we care? Consider the following two sets: [0, 1]
and Q ∩ [0, 1]. There are (at least) two different notions of the “size” of these sets.

(1) “Number of elements” (cardinality). Although they both contain an infinite number
of elements, set theorists would say that [0, 1] is uncountable and Q∩[0, 1] is countable.

(2) “Length” (measure). Intuitively, the interval [0, 1] has a length of 1. If the empty set
has a length of 0 (which makes sense), then the “length” of Q∩ [0, 1] (whatever that
means) should be somewhere between 0 and 1, although where in the middle is not
clear.

The central goal of measure theory is to generalize our intuitive ideas of length, area,
and volume to subsets of arbitrary sets. This will be applied to familiar settings like the
line R and the plane R2, and we will see that our new theory not only encompasses our
commonsense notions of length and area but also allows us to “measure” subsets which we
would not be able to do with a ruler. Here are some applications.

(1) Probability. Take any sample spaces you want, and declare that the measure of the
entire sample space to be 1. Then the measure of any subset of the sample space
is the probability that an event in that subset occurs. Probabilists put measures on
all sorts of spaces, including function spaces. As an example, if the sample space is
C([0, 1]), we could ask ourselves what is the measure of the subset of differentiable
functions.

(2) Integration theory. Measure theory lets us define the Lebesgue integral, which allows
us to integrate more functions, and gives us more general theorems for when we can
exchange limits and integration.

6.1. Measures. With this motivation in mind, let us define a measure on an arbitrary set
X.

Definition 6.1. A measure on a set X is a function µ on subsets of X with the following
properties:

(i) µ(E) ∈ [0,∞] (∞ is allowed!)
(ii) µ(∅) = 0.

(iii) If the sets {Ek}k∈N are disjoint subsets of X, then

µ

(
∞⋃
k=1

Ek

)
=
∞∑
k=1

µ(Ek).

This last property is called countable additivity

Other properties we might like µ to have are the following
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(iv) µ is invariant under symmetries such as translations, rotations, and reflections.
(v) µ agrees with our common notion of length, area, and volume. For example, we would

like µ([0, 1]) = 1.

Notice that I intentionally left the domain of µ vague. We would like the domain of µ to
be as large as possible. Ideally, we would like it to be all subsets of X. However, as you will
see in the beginning of your analysis course, it is impossible to construct a measure on all
subsets of R that has these five properties. The good news is that the construction involves
a “nasty” subset of R (and requires invoking the axiom of choice), so if we restrict ourselves
to a collection of “nice” subsets, we should be able to make this work. Our goal is to find a
collection of subsets of on which we can define a measure which is as large as possible and
contains everything we care about. The collection we will need is called a σ-algebra.

Definition 6.2. A collection M of subsets of X is a σ-algebra if

(i) ∅ ∈M.
(ii) M is closed under complement, i.e. if E ∈M then X \ E ∈M.

(iii) M is closed under countable unions, i.e. if {Ek}k∈N ⊂M, then
⋃∞
k=1Ek ∈M.

An algebra is the same thing, except it is only closed under finite unions.

If we want to define a measure on a σ−algebra, the fact that it is closed under countable
unions is crucial for the countable additivity property of a measure to make sense. Other
properties of σ−algebras which follow from the definition and basic set theory include

(iv) X ∈M.
(v) M is closed under countable intersection. This follows from De Morgan’s laws.
(vi) M is closed under relative complement, i.e. if E,F ∈M, then E \ F ∈M.

Here are some simple examples of σ-algebras on X.

(1) M = {∅, X} (the smallest σ-algebra).
(2) M = {A,Ac,∅, X} (the σ-algebra generated by the subset A).
(3) M = {all subsets of X} (the largest σ-algebra, also called the power set of X).

The first two are not very interesting. The power set of X is typically too large to define
a measure on. An exception is if X is a countable or finite set. In this case, let X be a
countable set, and let µ be a measure. As long as we know µ({x}) for all single-point sets
{x}, then, for any subset S of X,

µ(S) =
∑
x∈S

µ({x}),

where the sum is countable or finite (and can be infinite). The first σ-algebra which is of
interest is the σ-algebra generated by a collection of subsets.

Definition 6.3. Let E be a collection of subsets of X. Then the σ-algebra generated by
E, denoted M(E), is the unique smallest σ-algebra containing E. We can define M(E) in
one of two equivalent ways.

(i) M(E) is the intersection of all σ−algebras containing E.
(ii) If N is another σ-algebra containing E, then M(E) ⊂ N .

For (i), we can show that the intersection of σ-algebras is a σ−algebra. It is worth noting
that σ−algebras are huge and unwieldy. There is essentially no way of writing down an
arbitrary element of M(E) in terms of the elements of E . The most important of these
σ-algebras is the Borel σ-algebra, which is generated by the open sets.
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Definition 6.4. The Borel σ-algebra on X, denoted BX , is the σ-algebra generated by the
collection of open sets of X.

The Borel σ−algebra contains all open sets, all closed sets, all countable unions and
countable intersections of open and closed sets (some of which may be neither open nor
closed), etc. There is no nice way to write down a generic element of BX . For the special
case of the Borel σ−algebra on R, we have a nice result.

Proposition 6.1. The Borel σ−algebra on R is generated by any of the following:

(1) All open intervals, i.e. all intervals of the form (a, b).
(2) All intervals of one of the following forms: [a, b], (a, b], [a, b).
(3) All rays of one of the following forms (a,∞), [a,∞), (−∞, b), (−∞, b].

Proof. Let E be one of these collections. Since E ∈ BR, M(E) ∈ BR. All we have do now is
show that M(E) contains all open sets. For (i), we showed earlier that every open set in R
is the countable union of disjoint open intervals. For (ii) and (iii), we need to show we can
construct an open interval (a, b) using countably many set operations. For example, for the
closed intervals in (ii),

(a, b) =
∞⋂
n=1

[
a− 1

n
, b+

1

n

]
.

�

Now that we have discussed σ-algebras, we will return to measures, which, after all, is the
whole point of all of this. From now on, let X be a set and µ a measure defined on a σ-algebra
M. This set of three related objects is sometimes written as (X,µ,M) or (X,M, µ), and
is called a measure space. For now, we assume that µ is in fact defined on all of M. In
applications, we will generally construct µ and M at the same time, so that everyone plays
together nicely. A measure µ has many nice properties, which we summarize in the following
proposition. You will prove these in your analysis class.

Proposition 6.2. Let X be a set, and µ a measure defined on a σ-algebra M. Then µ has
the following properties.

(1) (Monotonicity) If E ⊂ F , µ(E) ≤ µ(F ). In addition, if µ(E) <∞, then µ(F \E) =
µ(F )− µ(E).

(2) (Countable Subadditivity) For any sequence of sets {En} (not necessarily disjoint),

µ

(
∞⋃
n=1

En

)
≤

∞∑
n=1

µ(En).

(3) (Continuity from Below) If {En} is an increasing sequence of nested sets, i.e. En ⊂
En+1, then

µ

(
∞⋃
n=1

En

)
= lim

n→∞
µ(En).

(4) (Continuity from Above) If {En} is an decreasing sequence of nested sets, i.e. En ⊃
En+1, and µ(E1) <∞, then

µ

(
∞⋂
n=1

En

)
= lim

n→∞
µ(En).
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With that taken care of, it is time to construct our first measure. We will construct
the Lebesgue measure, often denoted m, which measures length of subsets of R. It gives
the “correct” measure for intervals, but will in addition allow us to measure many other
sets. The contruction we will use is one I find intuitive. You will probably do this a little
differently in analysis class. That version has the advantage of letting you construct a whole
class of measures for which the Lebesgue measure is a special case; however, it requires more
definitions and theorems, and is one more step removed from what is actually going on. We
will do our construction in the following steps. Proofs will be either outlined, or omitted
entirely.

(1) Construct something which is roughly what we want, but which we can use on all
subsets of R. This is called the Lebesgue outer measure, denoted m∗.

(2) Show that m∗ gives the correct length for intervals.
(3) Find a σ-algebra L on which m∗ is actually a measure. This is the Lebesgue σ-algebra.
(4) Show that this σ-algebra contains:

(a) All subsets E of X with m∗(E) = 0. These are called null sets.
(b) The Borel σ−algebra.

First, we define the Lebesgue outer measure. Consider any subset E of R. We can find
always find a countable collection of open intervals {(an, bn)} such that

E ⊂
∞⋃
n=1

(an, bn).

In addition, it makes intuitive sense that we should have

length of E ≤
∞∑
n=1

(bn − an),

since E is contained in the union of these intervals. With this in mind, we define the Lebesgue
outer measure as follows.

Definition 6.5. For any subset E of R, the Lebesgue outer measure is the function m∗,
taking values in [0,∞] (∞ is allowed!) defined by

m∗(E) = inf

{
∞∑
n=1

(bn − an) : E ⊂
∞⋃
n=1

(an, bn)

}
.

Essentially, we are “approximating E from the outside” by open intervals, which is why
we call this outer measure. The idea is that we cover E with a countable collection of open
intervals and add up their lengths; the outer measure is the infimum over all such covers
(which may still be infinite!) Formally, an outer measure is defined as follows.

Definition 6.6. An outer measure on a set X is a function µ∗ defined on all subsets of
X with the following properties:

(i) µ∗(E) ∈ [0,∞] (∞ is allowed!)
(ii) µ(∅) = 0.

(iii) (Monotonicity) If E ⊂ F then µ∗(E) ≤ µ∗(F )
(iv) (Countable subadditivity) µ (

⋃∞
k=1Ek) ≤

∑∞
k=1 µ(Ek).

It is important to note that the outer measure µ∗ is defined on all subsets of X. Going
back to the Lebesgue outer measure, we can show the following.
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(1) m∗ is an outer measure
(2) The m∗ outer measure of any interval (open, closed, half-open) is equal to its length.

Next, we show that the Lebesgue outer measure of any countable set is 0.

Proposition 6.3. Let E ⊂ R be a countable set. Then m∗(E) = 0.

Proof. Since E is countable, we can write it as the sequence {xn}. We now use the “countable
epsilon trick”. Let ε > 0. Cover each xn with the open interval In = (xn−rn, xn+rn), where

rn =
1

2

ε

2n

By construction, each interval In has length 2rn = ε/2n. Since the outer measure is the
infimum of the total length of all such covers,

m∗(E) ≤
∞∑
n=1

ε

2n
= ε,

where we used the infinite sum of the geometric series. Since ε is arbitrary, m∗(E) = 0. �

In particular, this implies that m∗(Q) = 0 (which is kind of crazy, if you think about it!)
Next, for any outer measure µ∗, we define the concept of µ∗-measurability. Inituitively, a
set A is µ∗-measurable if it “behaves nicely” by splitting any arbitrary “test set” E into two
“nice pieces”. The formal definition is as follows, and is due to Carathéadory.

Definition 6.7. Let µ∗ be an outer measure on X. Then a subset A ⊂ X is µ∗-measurable
if for every test set E ⊂ X,

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac)

A set A splits any set E into a part which overlaps A and a part which does not. A is
“nice” if, whenever we do this, the outer measure of E is the sum of the outer measures of
these two pieces. You will sometimes see the criterion written

µ∗(E) = µ∗(E ∩ A) + µ∗(E \ A).

To complete the construction of the Lebesgue measure, we will use the Carathéadory
Extension Theorem, which we will not prove here but will be proved (hopefully!) in your
analysis class.

Theorem 6.1 (Carathéadory Extension Theorem). Let µ∗ be an outer measure on X, and
let M be the collection of µ∗-measurable sets. Then

(1) M is a σ-algebra.
(2) µ∗ ,when restricted to M, is a measure, which we designate µ.
(3) M contains all µ∗-null sets, i.e. all sets N with µ∗(N) = 0.

Proof. Here is an outline of the proof, which you may find useful. The basic tool you use is
the definition of µ∗ measurability, which is used over and over. Here is the order in which
you show things.

(1) ShowM is closed under complement and finite unions, thus is an algebra. (It suffices
to show if A,B ∈M then A ∪B ∈M).

(2) Show µ∗ is finitely additive onM. (It suffices to show if A and B are disjoint sets in
M, then µ∗(A ∪B) = µ∗(A) + µ∗(B)).
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(3) Show M is closed under countable disjoint unions. This implies it is closed under
countable unions, and thus is a σ-algebra. (To see why this works, take any se-
quence of sets {En}. Construct Fn from En by deleting anything which overlaps with
E1, . . . , En−1. We can get from En to Fn, or vice versa, by using a finite number of
set operations. In addition, by construction, ∪En = ∪Fn).

(4) Show µ∗ is countably additive on M, thus is a measure on M.
(5) Show if µ∗(N) = 0 then N ∈M.

�

The last property is particularly important. If a set has measure 0, we can, in general,
ignore it. (You could argue that the entire point of measure theory is figuring out which
sets are null sets so you can ignore them!) This property guarantees that if we construct a
measure this way, all µ∗-null sets are actually in the σ-algebra.

We are almost done. First, we use the Carathéadory Extension Theorem on the Lebesgue
outer measure m∗. Let L be the resulting σ−algebra of m∗-measurable sets, and let m be
the measure we obtain by restricting m∗ to L. (We use a different letter for the Lebesgue
σ-algebra, since the Lebesgue measure is the one of the most important measures, and we
want to distinguish it from generic σ-algebras). All that is left is to show that L contains the
entire Borel σ−algebra. To do this, it suffices to show that L contains any collecton of sets
which generates the σ−algebra. Since L is a σ−algebra, it must then contain the entire Borel
σ−algebra. The easiest way to do this is to show that all open intervals are µ∗-measurable
(although we will not actually do this here). We can also show that the Lebesgue measure
m is translation-invariant.

6.2. Measurable Functions and Integration. One of the advantages of the Lebesgue
formulation of the integral is that we can use it on a large class of functions, as long as we
have defined a measure. In order to do make this work, we need to define a measurable
function between two measure spaces.

Definition 6.8. Let (X,M) and (Y,N ) be sets together with σ−algebras. Then f : X → Y
is (M,N )-measurable (or just measurable) if, for all F ∈ N , f−1(F ) ∈M.

This is analogous to our definition of continuous functions. If you define a “measurable”
set to be a set in the appropriate σ-algebra, a measurable function is one where preimages
of measurable sets are measurable. Note that although both of these spaces likely have
measures associated with their σ-algebras, the measures themselves do not figure into this
definition. In addition, we note that as long as the σ−algebras of the sets involved “line up”
appropriately, compositions of measurable functions are measurable.

Although the definition of measurability can be applied to functions between any two
arbitrary measure spaces, we will only consider real-valued functions from now on. Let
f : (X,M) → R be a real-valued function. Unless otherwise specified, we always use the
Borel σ-algebra on the codomain R. Thus we say that f : (X,M)→ R isM-measurable (or
just measurable) if it is (M,B)-measurable. For functions on R, you will see the following
terms.

(1) f : R→ R is Borel measurable if f is (BR,BR)-measurable.
(2) f : R→ R is Lebesgue measurable if f is (L,BR)-measurable, where L is the Lebesgue

σ-algebra on R.
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Since BR ⊂ L, every Borel measurable function is Lebesgue measurable, but the converse is
not true. The main issue with the definition of measurability is that it is hard to verify, since
we don’t have a good way to characterize what sets belong to a given σ-algebra. Luckily, it
suffices to check the measurability criterion on a set which generates a σ-algebra

Proposition 6.4. Let (X,M) and (Y,N ) be measure spaces, and suppose N is the σ-
algebra generated by the collection of sets E. Then f : X → Y is measurable if and only if
f−1(E) ⊂M for all E ∈ E.

Proof. An outline of the proof is as follows. ( =⇒ ) This follows from the definition of
measurability, since E ⊂ N .
(⇐= ) Define the set

H = {A ∈ N : f−1(A) ∈M}.

We want to show that H contains N . From our initial assumption, H contains E . Next,
we show that H is a σ-algebra, by using the definition of a σ-algebra and the fact the the
inverse image operator f−1 commutes with set operations. Since H is a σ-algebra containing
E , it must also contain N , since N is the σ-algebra generated by E . �

We have the following important corollary.

Corollary 6.1. Every continuous function f : (X,BX)→ (Y,BY ) is measurable.

We can also define measurability in terms of the generators of the Borel σ-algebra on R.
The infinite rays are more useful than the intervals in this case.

Corollary 6.2. A function (X,M)→ R is measurable if and only if one of the following is
true.

(1) f−1((a,∞)) ∈M for all a ∈ R.
(2) f−1([a,∞)) ∈M for all a ∈ R.
(3) f−1((−∞, a)) ∈M for all a ∈ R.
(4) f−1((−∞, a]) ∈M for all a ∈ R.

I find the fourth one to be the most useful. If we call the set f−1(a) the level set of a,
then the set

f−1((−∞, a]) = {x : f(x) ≤ a}

can be called the sublevel set of a. Thus, for measurability of real-valued functions, we only
have to check the sublevel sets.

Finally, the set of measurable functions is nice, in that pretty much however we slice and
dice them, we wind up with a measurable function.

Proposition 6.5. Let f, g and {fn}n∈N be measurable functions from (X,M) to R. Then
the following are measurable.

(1) f + g and fg.
(2) max(f, g) and min(f, g).
(3) supn fn(x) and infn fn(x).
(4) lim supn→∞ fn(x) and lim infn→∞ fn(x).
(5) limn→∞ fn(x), provided the limit exists.
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The limit superior and limit inferior of a real-valued sequence {xn} are defined by

lim sup
n→∞

xn = lim
n→∞

(
sup
k≥n

xk

)
lim sup
n→∞

xn = lim
n→∞

(
inf
k≥n

xk

)
.

We can think of the limit superior as the limit of the sequence {yn}, given by

yn = sup
k≥n

xk.

This is a decreasing sequence, since we are taking the supremum over fewer and fewer terms.
The limit superior of {xn} is the limit of this sequence, which is the infimum since the
sequence is decreasing. Similarly, the limit inferior is the limit of an increasing sequence. As
long as we allow the values ±∞, lim supn→∞ xn and lim infn→∞ xn exist for all real-valued
sequences, and

lim inf
n→∞

xn ≤ lim sup
n→∞

xn.

The limit of a sequence limn→∞ xn exists if and only if lim supn→∞ xn = lim infn→∞ xn.

6.3. Lebesgue Integral. From now on, we will assume all functions are measurable. This
is not an unreasonable assumption, because measurable functions are nice, and we like nice
things! (In general, a function which is merely measurable is the “least nice” function we
are willing to deal with). Probabilists often deal with nonmeasurable functions, but the rest
of us can safely use the heuristic that “every reasonable function is measurable”.

We will now define the Lebesgue integral of real-valued functions on an arbitrary measure
space (X,M, µ). This is done in three steps. These same three steps recur in many contexts.

(1) Define the integral for nonnegative, simple functions.
(2) Extend this to nonnegative functions (by taking the supremum).
(3) Extend this to all real-valued functions (by splitting into positive and negative parts).

First, we define a simple function.

Definition 6.9. A simple function is a function whose range is a finite set. Let φ :
(X,M)→ R be simple. Then we can write φ in standard form as

φ(x) =
n∑
k=1

ykχEk
(x),

where the sets Ek ∈M are disjoint, and χEk
(x) is the characteristic function

χEk
(x) =

{
1 x ∈ Ek
0 x /∈ Ek

The range of φ is the finite set {y1, . . . , yn}, and we can also see that Ek = f−1({yk}).

We can show that the characteristic function χEk
(x) is a measurable function if and only

if Ek ∈ M (using the sublevel sets criterion). Thus the simple function φ(x) is measur-
able, since it is the sum of measurable functions. We the define the Lebesgue integral of a
nonnegative, simple function as follows.

Definition 6.10. Let φ : (X,M, µ)→ R be a simple function written in standard form as

φ(x) =
n∑
k=1

ykχEk
(x),
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with yk ≥ 0. Then the integral of φ is defined by∫
X

φdµ =
n∑
k=1

ykµ(Ek),

where we always take 0 · ∞ = 0. We note that this integral can take a value of ∞. We
sometimes write this as

∫
φ for shorthand.

We can show that this definition is well-defined, i.e. if we have two different representations
of the same simple function, the integral is the same. We can also integrate over a set A ∈M
instead of the whole space X (this is analogous to integrating over a bounded interval [a, b]
instead of all of R).

Definition 6.11. Let A ∈M and φ : (X,M, µ)→ R a simple function written in standard
form. Then we define the integral over the set A as∫

A

φdµ =

∫
X

φ χAdµ =
n∑
k=1

ykµ(Ek ∩ A).

This integral has the following nice properties.

Proposition 6.6. Let φ and ψ be simple functions (X,M, µ)→ R. Then

(1)
∫

(φ+ ψ) =
∫
φ+

∫
ψ.

(2) If c ≥ 0, then
∫
cφ = c

∫
φ.

(3) If 0 ≤ φ ≤ ψ, then
∫
φ ≤

∫
ψ.

(4) Define the real-valued function ρ on M by

ρ(E) =

∫
E

φdµ.

Then ρ is a measure on M.

The first three are familiar from calculus. The last one may seem a little strange, but is
really useful for proving things (especially the monotone convergence theorem). It also gives
us another way of constructing a measure. Now that we have defined the integral for simple
functions, the next step is to extend it to nonnegative functions. First, we show that we can
approximate nonnegative real-valued functions with simple functions.

Lemma 6.1 (Simple Approximation Lemma). Let f : (X,M) → R be measurable with
f ≥ 0. Then there is an increasing sequence of nonnegative simple functions {φn(x)}, i.e.
0 ≤ φ1 ≤ φ2 ≤ · · · ≤ f such that φn → f pointwise. This convergence is uniform if f is
bounded.

Proof. The rough idea is as follows. If the range of f is bounded, partition the range into
finitely many points and make “cake layers”, refining the partition mesh at each step. If the
range is unbounded, for each n, partition [0, n] using a finer mesh at each step. �

We then define the integral of a nonnegative function in the following way.

Definition 6.12. Let f : (X,M, µ) → R be a measurable, nonnegative function. Then we
define the integral of f by∫

X

fdµ = sup

{∫
X

φdµ : φ simple, 0 ≤ φ ≤ f

}
.
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Note that this can be infinite. We say that a nonnegative function f is integrable if this
integral is finite.

The same properties for the integral of simple functions hold for the integral of nonnegative
functions. Finally, we define the integral of real-valued functions. First, define the positive
and negative parts of a function f as

f+ = max{f, 0} f− = max{−f, 0}.

Note that f = f+ − f− and |f | = f+ + f−. We then have the following definition

Definition 6.13. Let f : (X,M, µ) → R be a measurable function. Then we say f is
integrable if |f | is integrable, i.e.

∫
X
|f |dµ < ∞. In that case, we define the integral of f

by ∫
X

fdµ =

∫
X

f+dµ−
∫
X

f−dµ.

The integral has all of the familiar properties, which we summarize in the following propo-
sition.

Proposition 6.7. Let f, g : (X,M, µ)→ R be integrable. Then the integral has the following
properties

(1) Linearity:
∫

(cf + g) = c
∫
f +

∫
g.

(2) Comparison: If f ≤ g, then
∫
f ≤

∫
g.

(3) Monotonicity: If f ≥ 0 and A ⊂ B, then
∫
A
f ≤

∫
B
f , where

∫
A
f =

∫
fχA.

(4) |
∫
f | ≤

∫
|f |.

Before we conclude this section, we note the special role played by sets of measure 0,
which are known as null sets. We say that a particular property holds “almost everywhere”
(abbreviated “a.e.”) if it holds everywhere except a set of measure zero. Examples include:
a function which is continuous almost everywhere; a function which is 0 almost everywhere;
a function which is bounded almost everywhere; two functions which are equal almost ev-
erywhere; and a sequence of functions which converges almost everywhere. The following
proposition gives us a way to characterize functions which are 0 almost everywhere.

Proposition 6.8. Let f : X → R be a nonnegative function. Then f = 0 almost everywhere
if and only if

∫
f = 0.

Proof.
( =⇒ ) We first prove this for a simple function φ. Write φ in standard form as

φ(x) =
n∑
k=1

ykχEk
(x).

If φ = 0 almost everywhere, either yk = 0 or µ(Ek) = 0 (or both!) for all k. Using the
definition of the integral of a simple function,

∫
φ = 0. Now take any nonnegative function

f with f = 0 almost everywhere. For any simple function φ with 0 ≤ φ ≤ f , φ = 0 almost
everywhere as well. Thus, by the definition of the integral of nonnegative functions,∫

f = sup

{∫
φ simple with 0 ≤ φ ≤ f

}
= 0.
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( ⇐= ) Here we prove the contrapositive, i.e. we will show that if f is not 0 almost
everywhere, the integral of f must be positive. Let E = {x ∈ X : f(x) > 0} be the set on
which f is nonzero. We then employ the following useful decomposition

E =
∞⋃
n=1

En En =

{
x ∈ X : f(x) >

1

n

}
.

If f is not 0 almost everywhere, then one of the sets En has positive measure, i.e. µ(En) =
r > 0 for some n. But then we have

f ≥ 1

n
χEn ,

from which it follows that ∫
f ≥

∫
1

n
χEn =

1

n
µ(E)n =

r

n
> 0.

�

Similarly, for a real-valued function f : X → R, we have f = 0 almost everywhere if and
only if

∫
|f | = 0.

Recall that a function f : X → R is integrable if
∫
|f |dµ < ∞. From the integration

properties, the set of integrable, real-valued functions is closed under addition and scalar
multiplication, thus is a vector space. We call this vector space L1 or L1(X) (if we wish to
indicate the domain of the functions in the space). We would like to define a natural norm
on this vector space by

‖f‖ =

∫
X

|f |dµ.

We call this the L1 norm, which is sometimes notated ‖f‖L1 Since we are integrating |f |,
this is nonnegative, and is finite since we are restricting ourselves to integrable functions.
The triangle inequality follows from the triangle inequality on R, together with the linearity
of the integral. Similarly, we can pull constants out by the linearity of the integral. If f = 0,
then

∫
|f |dµ = 0. However, ‖f‖ = 0 does not imply f = 0, only the weaker result that f = 0

almost everywhere. Thus this is not a norm on the vector space of integrable functions.
It seems like we are in a bit of a bind here. However, we can “cheat” our way out of it.

If two functions f and g are equal almost everywhere, then they are “essentially the same”.
They may differ on a null set, but for most purposes we don’t care about that. In this
particular case, if f and g are integrable and are equal almost everywhere

∫
fdµ =

∫
gdµ.

Thus, we shift our discussion from functions to equivalence classes of functions, where we
define the equivalence relation f ∼ g if f = g almost everywhere. If we consider L1 to be
the vector space of these equivalence classes of integrable functions, the L1 norm becomes a
true norm on this space. Since we can essentially ignore null sets, most of the time we can
ignore this equivalence class mumbo jumbo as well. When we write f ∈ L1, what we are
saying is that f is an integrable function which is uniquely defined up to null sets, which is
good enough for most purposes.

6.4. Convergence Theorems. Finally, we present the three big convergence theorems,
which are perhaps the main advantage of the Lebesgue integration theory. You will prove
them in the analysis course. The first result is the Monotone Convergence Theorem, which
states that limits and integration can be exchanged for increasing sequences of nonnegative
functions.
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Theorem 6.2 (Monotone Convergence Theorem (MCT)). Let fn : (X,M, µ)→ R measur-
able with fn ≥ 0. If fn ↑ f pointwise, then

lim
n→∞

∫
X

fndµ =

∫
X

(
lim
n→∞

fn

)
dµ =

∫
X

fdµ.

where this can be infinite.

The next result is Fatou’s Lemma. While it is mainly used to prove the Dominated
Convergence Theorem, it is a useful result in its own right.

Theorem 6.3 (Fatou’s Lemma). Let fn : (X,M, µ)→ R measurable with fn ≥ 0. Then∫
lim inf
n→∞

fn ≤ lim inf
n→∞

∫
fn.

Finally, the Dominated Convergence Theorem gives a criterion for when limits and inte-
gration can be exchanged for a sequence of measurable functions (which do not have to be
nonnegative).

Theorem 6.4 (Lebesgue Dominated Convergence Theorem (DCT)). Let fn : (X,M, µ)→
R measurable with fn(x)→ f(x) pointwise. If there exists an integrable function g such that
|fn| ≤ g for all n, then f is integrable and

lim
n→∞

∫
X

fndµ =

∫
X

(
lim
n→∞

fn

)
dµ =

∫
X

fdµ.

We can use this theorem to explain what occurs with the sequence of functions fn(x) = xn

on [0, 1]. Recall that fn(x)→ f(x) pointwise, where

f(x) =

{
0 x ∈ [0, 1)

1 x = 1,

but this convergence is not uniform. Let g(x) = 1, i.e. the constant function at 1. Then g

is integrable on [0, 1], since
∫ 1

0
g(x)dx = 1, and |fn(x)| ≤ g(x) on [0, 1] for all n. Since

the conditions of the Dominated Convergence Theorem are satisfied, we conclude that
limn→∞

∫ 1

0
fn(x)dx =

∫ 1

0
f(x)dx, which explains the convergence result we obtained above!


